A161935 28-gonal numbers: a(n) = n*(13*n - 12).
0, 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, 2380, 2745, 3136, 3553, 3996, 4465, 4960, 5481, 6028, 6601, 7200, 7825, 8476, 9153, 9856, 10585, 11340, 12121, 12928, 13761, 14620, 15505, 16416, 17353, 18316, 19305, 20320, 21361, 22428, 23521
Offset: 0
Examples
G.f. = x + 28*x^2 + 81*x^3 + 160*x^4 + 265*x^5 + 396*x^6 + 553*x^7 + ...
Links
- Daniel Mondot, Table of n, a(n) for n = 0..1000
- Pierre Gayet, Note et Compte rendu (gif version).
- Pierre Gayet, Note et Compte Rendu (pdf version).
- Pierre Gayet, 98 séquences générées ... par la formule générale indiquée.
- Claude Monet, Nymphéas.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ (n+1)*(13*n+1): n in[0..50] ];
-
Mathematica
lst={}; Do[a=13*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst Table[n*(13*n - 12), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
-
PARI
{a(n) = n*(13*n - 12)}; /* Michael Somos, Dec 07 2016 */
Formula
a(n+1) = a(n) + 26*n + 1. - Vincenzo Librandi, Nov 30 2010
Product_{n>=2} (1 - 1/a(n)) = 13/14. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 13*x^2). - Nikolaos Pantelidis, Feb 05 2023
From Elmo R. Oliveira, Dec 14 2024: (Start)
G.f.: x*(1 + 25*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
Extensions
Edited by N. J. A. Sloane, Dec 07 2016 at the suggestion of Daniel Sterman.
Definition simplified by Omar E. Pol, Aug 10 2018
Comments