cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161941 a(n) = ((4+sqrt(2))*(2+sqrt(2))^n + (4-sqrt(2))*(2-sqrt(2))^n)/4.

Original entry on oeis.org

2, 5, 16, 54, 184, 628, 2144, 7320, 24992, 85328, 291328, 994656, 3395968, 11594560, 39586304, 135156096, 461451776, 1575494912, 5379076096, 18365314560, 62703106048, 214081795072, 730920968192, 2495520282624, 8520239194112
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009

Keywords

Comments

Second binomial transform of A135530.

Crossrefs

Cf. A135530, A161944 (third binomial transform of A135530).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+r)*(2+r)^n+(4-r)*(2-r)^n)/4: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Mathematica
    LinearRecurrence[{4,-2},{2,5},30] (* Harvey P. Dale, May 26 2012 *)
  • PARI
    x='x+O('x^30); Vec((2-3*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 2; a(1) = 5.
G.f.: (2-3*x)/(1-4*x+2*x^2).
a(n) = 2*A007070(n) - 3*A007070(n-1). - R. J. Mathar, Oct 20 2017

Extensions

Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009