cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164095 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 6.

Original entry on oeis.org

5, 6, 10, 12, 20, 24, 40, 48, 80, 96, 160, 192, 320, 384, 640, 768, 1280, 1536, 2560, 3072, 5120, 6144, 10240, 12288, 20480, 24576, 40960, 49152, 81920, 98304, 163840, 196608, 327680, 393216, 655360, 786432, 1310720, 1572864, 2621440, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Comments

Interleaving of A020714 and A007283 without initial term 3.
Partial sums are in A164096.
Binomial transform is A048655 without initial 1, second binomial transform is A161941 without initial 2, third binomial transform is A164037, fourth binomial transform is A161731 without initial 1, fifth binomial transform is A164038, sixth binomial transform is A164110.

Crossrefs

Programs

  • Magma
    [ n le 2 select n+4 else 2*Self(n-2): n in [1..40] ];
  • Mathematica
    LinearRecurrence[{0,2},{5,6},50] (* or *) With[{nn=20},Riffle[NestList[ 2#&,5,nn],NestList[2#&,6,nn]]] (* Harvey P. Dale, Aug 15 2020 *)

Formula

a(n) = A070876(n)/3.
a(n) = (4-(-1)^n)*2^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(5+6*x)/(1-2*x^2).

A161944 a(n) = ((4+sqrt(2))*(3+sqrt(2))^n + (4-sqrt(2))*(3-sqrt(2))^n)/4.

Original entry on oeis.org

2, 7, 28, 119, 518, 2275, 10024, 44219, 195146, 861343, 3802036, 16782815, 74082638, 327016123, 1443518272, 6371996771, 28127352722, 124160138935, 548069364556, 2419295214791, 10679285736854, 47140647917587
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009

Keywords

Comments

Third binomial transform of A135530.

Crossrefs

Cf. A135530, A161941 (second binomial transform of A135530).

Programs

  • GAP
    a:=[2,7];; for n in [3..25] do a[n]:=6*a[n-1]-7*a[n-2]; od; a; # Muniru A Asiru, Apr 04 2018
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+r)*(3+r)^n+(4-r)*(3-r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
    
  • Mathematica
    LinearRecurrence[{6,-7}, {2,7}, 50] (* G. C. Greubel, Apr 03 2018 *)
    Table[((4+Sqrt[2])(3+Sqrt[2])^n+(4-Sqrt[2])(3-Sqrt[2])^n)/4,{n,0,30}]// Simplify (* Harvey P. Dale, Jun 03 2020 *)
  • PARI
    x='x+O('x^30); Vec((2-5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Apr 03 2018
    

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 2; a(1) = 7.
G.f.: (2-5*x)/(1-6*x+7*x^2).
E.g.f.: exp(3*x)*(4*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018

Extensions

Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009

A001882 a(2n) = a(2n-1) + 2a(2n-2), a(2n+1) = a(2n) + a(2n-1), with a(1) = 2 and a(2) = 3.

Original entry on oeis.org

2, 3, 5, 11, 16, 38, 54, 130, 184, 444, 628, 1516, 2144, 5176, 7320, 17672, 24992, 60336, 85328, 206000, 291328, 703328, 994656, 2401312, 3395968, 8198592, 11594560, 27991744, 39586304, 95569792, 135156096, 326295680, 461451776, 1114043136, 1575494912
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A161941 (bisection).

Programs

  • Maple
    A001882:=-(-2-3*z+3*z**2+z**3)/(1-4*z**2+2*z**4); # [Simon Plouffe in his 1992 dissertation for offset 0.]
  • Mathematica
    a[1] = 2; a[2] = 3; a[n_] := a[n] = If[EvenQ[n], a[n-1] + 2*a[n-2], a[n-1] + a[n-2]]; Table[a[n], {n, 50}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    x='x+O('x^50); Vec((2+3*x-3*x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Aug 13 2017

Formula

G.f.: see Maple program.

Extensions

Removed the attribute "conjectured" from the Plouffe g.f. R. J. Mathar, Aug 17 2009

A164037 Expansion of (5-9*x)/(1-6*x+7*x^2).

Original entry on oeis.org

5, 21, 91, 399, 1757, 7749, 34195, 150927, 666197, 2940693, 12980779, 57299823, 252933485, 1116502149, 4928478499, 21755355951, 96032786213, 423909225621, 1871225850235, 8259990522063, 36461362180733, 160948239429957
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A161941 without initial 2. Third binomial transform of A164095. Inverse binomial transform of A161731 without initial 1.

Crossrefs

Cf. A161941, A164095 (5, 6, 10, 12, 20, 24, ...), A161731.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(3+r)^n+(5-3*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
    
  • Mathematica
    CoefficientList[Series[(5-9x)/(1-6x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-7},{5,21},30] (* Harvey P. Dale, Apr 27 2017 *)
  • PARI
    Vec((5-9*x)/(1-6*x+7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 6*a(n-1)-7*a(n-2) for n > 1; a(0) = 5, a(1) = 21.
G.f.: (5-9*x)/(1-6*x+7*x^2).
a(n) = ((5+3*sqrt(2))*(3+sqrt(2))^n+(5-3*sqrt(2))*(3-sqrt(2))^n)/2.
E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009
Showing 1-4 of 4 results.