cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A164096 Partial sums of A164095.

Original entry on oeis.org

5, 11, 21, 33, 53, 77, 117, 165, 245, 341, 501, 693, 1013, 1397, 2037, 2805, 4085, 5621, 8181, 11253, 16373, 22517, 32757, 45045, 65525, 90101, 131061, 180213, 262133, 360437, 524277, 720885, 1048565, 1441781, 2097141, 2883573, 4194293, 5767157
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Crossrefs

Cf. A164095.

Programs

  • Magma
    T:=[ n le 2 select n+4 else 2*Self(n-2): n in [1..38] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];

Formula

a(n) = 2*a(n-2)+11 for n > 2; a(1) = 5, a(2) = 11.
a(n) = (27-5*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2-11.
G.f.: x*(5+6*x)/(1-x-2*x^2+2*x^3).

A357975 Divide all prime indices by 2, round down, and take the number with those prime indices, assuming prime(0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 5, 3, 4, 1, 5, 4, 7, 2, 6, 3, 7, 2, 4, 5, 8, 3, 11, 4, 11, 1, 6, 5, 6, 4, 13, 7, 10, 2, 13, 6, 17, 3, 8, 7, 17, 2, 9, 4, 10, 5, 19, 8, 6, 3, 14, 11, 19, 4, 23, 11, 12, 1, 10, 6, 23, 5, 14, 6, 29, 4, 29, 13, 8, 7, 9, 10, 31
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the Heinz number of the part-wise half (rounded down) of the partition with Heinz number n, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Each n appears A000005(n) times at odd positions (infinitely many at even). To see this, note that our transformation does not distinguish between A066207 and A066208.

Examples

			The prime indices of n = 1501500 are {1,1,2,3,3,3,4,5,6}, so the prime indices of a(n) are {1,1,1,1,2,2,3}; hence we have a(1501500) = 720.
The 6 odd positions of 2124 are: 63, 99, 105, 165, 175, 275, with prime indices:
   63: {2,2,4}
   99: {2,2,5}
  105: {2,3,4}
  165: {2,3,5}
  175: {3,3,4}
  275: {3,3,5}
		

Crossrefs

Positions of 1's are A000079.
Positions of 2's are 3 and A164095.
Positions of first appearances are A297002, sorted A066207.
A004526 is floor(n/2), with an extra first zero.
A056239 adds up prime indices, row-sums of A112798.
A109763 lists primes of index floor(n/2).

Programs

  • Mathematica
    Table[Times@@(If[#1<=2,1,Prime[Floor[PrimePi[#1]/2]]^#2]&@@@FactorInteger[n]),{n,100}]

Formula

Completely multiplicative with a(prime(2k)) = prime(k) and a(prime(2k+1)) = prime(k). Cf. A297002.
a(prime(n)) = A109763(n-1).

A164038 Expansion of (5-19*x)/(1-10*x+23*x^2).

Original entry on oeis.org

5, 31, 195, 1237, 7885, 50399, 322635, 2067173, 13251125, 84966271, 544886835, 3494644117, 22414043965, 143763624959, 922113238395, 5914569009893, 37937085615845, 243335768930911, 1560804720144675, 10011324516035797
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A161731 without initial 1. Fifth binomial transform of A164095. Inverse binomial transform of A164110.

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(5+r)^n+(5-3*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
    
  • Mathematica
    LinearRecurrence[{10,-23},{5,31},50] (* or *) CoefficientList[Series[(5 - 19*x)/(1 - 10*x + 23*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 08 2017 *)
  • PARI
    Vec((5-19*x)/(1-10*x+23*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 31.
G.f.: (5-19*x)/(1-10*x+23*x^2).
a(n) = ((5+3*sqrt(2))*(5+sqrt(2))^n + (5-3*sqrt(2))*(5-sqrt(2))^n)/2.
E.g.f: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(5*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009

A164110 a(n) = 12*a(n-1) - 34*a(n-2) for n > 1; a(0) = 5, a(1) = 36.

Original entry on oeis.org

5, 36, 262, 1920, 14132, 104304, 771160, 5707584, 42271568, 313200960, 2321178208, 17205305856, 127543611200, 945542935296, 7010032442752, 51971929512960, 385322051101952, 2856819009782784, 21180878379927040
Offset: 0

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Comments

Binomial transform of A164038. Sixth binomial transform of A164095.

Crossrefs

Programs

  • Magma
    [ n le 2 select 31*n-26 else 12*Self(n-1)-34*Self(n-2): n in [1..19] ];
    
  • Mathematica
    LinearRecurrence[{12,-34}, {5,36}, 50] (* G. C. Greubel, Sep 11 2017 *)
  • PARI
    x='x+O('x^50); Vec((5-24*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Sep 11 2017

Formula

a(n) = ((5+3*sqrt(2))*(6+sqrt(2))^n+(5-3*sqrt(2))*(6-sqrt(2))^n)/2.
G.f.: (5-24*x)/(1-12*x+34*x^2).
E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(6*x). - G. C. Greubel, Sep 11 2017

A164037 Expansion of (5-9*x)/(1-6*x+7*x^2).

Original entry on oeis.org

5, 21, 91, 399, 1757, 7749, 34195, 150927, 666197, 2940693, 12980779, 57299823, 252933485, 1116502149, 4928478499, 21755355951, 96032786213, 423909225621, 1871225850235, 8259990522063, 36461362180733, 160948239429957
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A161941 without initial 2. Third binomial transform of A164095. Inverse binomial transform of A161731 without initial 1.

Crossrefs

Cf. A161941, A164095 (5, 6, 10, 12, 20, 24, ...), A161731.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+3*r)*(3+r)^n+(5-3*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
    
  • Mathematica
    CoefficientList[Series[(5-9x)/(1-6x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-7},{5,21},30] (* Harvey P. Dale, Apr 27 2017 *)
  • PARI
    Vec((5-9*x)/(1-6*x+7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 6*a(n-1)-7*a(n-2) for n > 1; a(0) = 5, a(1) = 21.
G.f.: (5-9*x)/(1-6*x+7*x^2).
a(n) = ((5+3*sqrt(2))*(3+sqrt(2))^n+(5-3*sqrt(2))*(3-sqrt(2))^n)/2.
E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009

A306696 Lexicographically earliest sequence of nonnegative terms such that for any n > 0 and k > 0, if a(n) >= a(n+k), then a(n+2*k) <> a(n+k).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 1, 2, 2, 3, 0, 3, 2, 4, 1, 3, 3, 4, 1, 4, 2, 5, 2, 4, 3, 5, 0, 5, 3, 6, 2, 4, 4, 6, 1, 5, 3, 7, 3, 5, 4, 6, 1, 6, 4, 7, 2, 5, 5, 7, 2, 6, 4, 8, 3, 6, 5, 7, 0, 7, 5, 8, 3, 6, 6, 8, 2, 7, 4, 9, 4, 7, 6, 8, 1, 8, 5, 9, 3, 7, 7, 9
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

This sequence has graphical features in common with A286326.

Examples

			For n=1:
- a(1) = 0 is suitable.
For n=2:
- a(2) = 0 is suitable.
For n=3:
- a(1) = 0 >= a(2) = 0, so a(3) <> 0,
- a(3) = 1 is suitable.
For n=4:
- a(2) = 0 < a(3) = 1,
- a(4) = 0 is suitable.
For n=5:
- a(3) = 1 >= a(4) = 0, so a(5) <> 0,
- a(1) = 0 < a(3) = 1,
- a(5) = 1 is suitable.
For n=6:
- a(4) = 0 < a(5) = 1,
- a(2) = 0 >= a(4) = 0, so a(6) <> 0,
- a(6) = 1 is suitable.
For n=7:
- a(5) = 1 >= a(6) = 1, so a(7) <> 1,
- a(3) = 1 >= a(5) = 1, so a(7) <> 1,
- a(1) = 0 >= a(4) = 0, so a(7) <> 0,
- a(7) = 2 is suitable.
		

Crossrefs

Formula

Empirically:
- a(n) = 0 iff n is a power of 2 (A000079),
- a(n) = 1 iff n = 3 or belongs to A164095,
- a(2*n) = a(n),
- A181497(n) is the least k such that a(k) = n.
Showing 1-6 of 6 results.