A357976 Numbers with a divisor having the same sum of prime indices as their quotient.
1, 4, 9, 12, 16, 25, 30, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 144, 154, 160, 165, 169, 192, 196, 198, 210, 220, 225, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 351, 352, 360, 361, 364, 390, 400, 432, 441, 442, 448
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 4: {1,1} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 25: {3,3} 30: {1,2,3} 36: {1,1,2,2} 40: {1,1,1,3} 48: {1,1,1,1,2} 49: {4,4} For example, 40 has factorization 8*5, and both factors have the same sum of prime indices 3, so 40 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,s,t,i,R; F:= ifactors(n)[2]; F:= map(t -> [numtheory:-pi(t[1]),t[2]], F); s:= add(t[1]*t[2],t=F)/2; if not s::integer then return false fi; try R:= Optimization:-Maximize(0, [add(F[i][1]*x[i],i=1..nops(F)) = s, seq(x[i]<= F[i][2],i=1..nops(F))], assume=nonnegint, depthlimit=20); catch "no feasible integer point found; use feasibilitytolerance option to adjust tolerance": return false; end try; true end proc: filter(1):= true: select(filter, [$1..1000]); # Robert Israel, Oct 26 2023
-
Mathematica
sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]; Select[Range[100],MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]
Comments