cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162268 a(n) = ((5+sqrt(2))*(1+sqrt(2))^n + (5-sqrt(2))*(1-sqrt(2))^n)/2.

Original entry on oeis.org

5, 7, 19, 45, 109, 263, 635, 1533, 3701, 8935, 21571, 52077, 125725, 303527, 732779, 1769085, 4270949, 10310983, 24892915, 60096813, 145086541, 350269895, 845626331, 2041522557, 4928671445, 11898865447, 28726402339, 69351670125
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009

Keywords

Comments

Binomial transform of A162396.

Crossrefs

Cf. A162396.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+r)*(1+r)^n+(5-r)*(1-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 02 2009
    
  • Mathematica
    LinearRecurrence[{2,1}, {5,7}, 30] (* Vincenzo Librandi, Feb 03 2018 *)
    Table[(4*LucasL[n, 2] + LucasL[n + 1, 2])/2, {n, 0, 30}] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    x='x+O('x^30); Vec((5-3*x)/(1-2*x-x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

a(n) = 2*a(n-1) + a(n-2) for n > 1; a(0) = 5, a(1) = 7.
G.f.: (5-3*x)/(1-2*x-x^2).
a(n) = 5*A000129(n+1) - 3*A000129(n). - R. J. Mathar, Mar 06 2013
a(n) = 4*A001333(n) + A001333(n+1). - G. C. Greubel, Aug 17 2018

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 02 2009