cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162395 a(n) = -(-1)^n * n^2.

Original entry on oeis.org

1, -4, 9, -16, 25, -36, 49, -64, 81, -100, 121, -144, 169, -196, 225, -256, 289, -324, 361, -400, 441, -484, 529, -576, 625, -676, 729, -784, 841, -900, 961, -1024, 1089, -1156, 1225, -1296, 1369, -1444, 1521, -1600, 1681, -1764, 1849, -1936, 2025, -2116, 2209, -2304, 2401, -2500
Offset: 1

Views

Author

Michael Somos, Jul 02 2009

Keywords

Comments

This sequence is the denominator of (Pi^2)/12 = 1/1-1/4+1/9-1/16+1/25-1/36+... - Mohammad K. Azarian, Dec 29 2011
Also, circulant determinant of [1,2,...,n,n-1,...,1], i.e., determinant of the (2n-1) X (2n-1) matrix which has this as first row (and also first column), where row k+1 is obtained by cyclically shifting row k one place to the left. - M. F. Hasler, Dec 17 2016

Examples

			G.f. = x - 4*x^2 + 9*x^3 - 16*x^4 + 25*x^5 - 36*x^6 + 49*x^7 - 64*x^8 + 81*x^9 + ...
		

Crossrefs

For the reversion of this sequence see A263843 (and also A007297).

Programs

  • Magma
    [(-1)^(n+1) * n^2: n in [1..60]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(-1)^(n+1) * n^2, {n, 60}] (* Vincenzo Librandi, Feb 15 2013 *)
  • PARI
    {a(n) = -(-1)^n * n^2};
    

Formula

Euler transform of length 2 sequence [-4, 3].
a(n) is multiplicative with a(2^e) = -(4^e) if e>0, a(p^e) = (p^2)^e if p>2.
G.f.: x * (1 - x) / (1 + x)^3.
E.g.f.: exp(-x) * (x - x^2).
a(n) = a(-n) = -(-1)^n * A000290(n) for all n in Z.
Sum_{n>=1} 1/a(n) = Pi^2/12 (A072691). - Amiram Eldar, Dec 10 2022
Dirichlet g.f.: zeta(s-2)*(1-2^(3-s)) = DirichletEta(s-2). - Amiram Eldar, Jan 07 2023