cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162483 a(n) is the number of perfect matchings of an edge-labeled 2 X (2n+1) Mobius grid graph.

Original entry on oeis.org

3, 6, 13, 31, 78, 201, 523, 1366, 3573, 9351, 24478, 64081, 167763, 439206, 1149853, 3010351, 7881198, 20633241, 54018523, 141422326, 370248453, 969323031, 2537720638, 6643838881, 17393796003, 45537549126, 119218851373, 312119004991, 817138163598
Offset: 0

Views

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

This is a specialization for m=2 of a general formula for the number of perfect matchings of an edge-labeled m X (2n+1) Mobius grid graph.

Examples

			G.f. = 3 + 6*x + 13*x^2 + 31*x^3 + 78*x^4 + 201*x^5 + 523*x^6 + 1366*x^7 + ...
a(0) = 3 because this is the number of perfect matchings of a 2 X 1 Mobius grid graph (one for each of the three multiple edges).
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3-6*x+x^2)/((1-x)*(x^2-3*x+1)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    Table[Re[(1 - I) (2*I + Fibonacci[2 + 2*n] + 1/2 (-Fibonacci[1 + 2*n] + LucasL[1 + 2*n]))], {n, 0, 30}]
    Table[LucasL[2*n + 1] + 2, {n, 0, 30}] (* Clark Kimberling, Oct 26 2012 *)
    LinearRecurrence[{4, -4, 1}, {3, 6, 13}, 30] (* or *) CoefficientList[Series[(-3 + 6 x - x^2)/(-1 + 4 x - 4 x^2 + x^3), {x, 0, 30}], x] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    {a(n) = 2 + fibonacci(2*n) + fibonacci(2*n+2)}; /* Michael Somos, Nov 03 2016 */
    

Formula

a(n) = Real((1-I) * ((L(2*n+1) - F(2*n+1))/2 + F(2*n+2) + 2*I)).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: (3-6*x+x^2)/((1-x)*(x^2-3*x+1)). (End)
a(n+1)-a(n) = A005248(n+1). - R. J. Mathar, Dec 18 2010
a(n) = A000032(2n+1)+2. - Clark Kimberling, Oct 26 2012
a(n) = 2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016
a(n) = 2 + L(2*n+1), A256233(n) = -a(-n-1) for all n in Z. - Michael Somos, Nov 03 2016