A162494 Number of reduced words of length n in the Weyl group E_8 on 8 generators and order 696729600.
1, 8, 35, 112, 294, 672, 1386, 2640, 4718, 8000, 12978, 20272, 30645, 45016, 64470, 90264, 123829, 166768, 220849, 287992, 370250, 469784, 588833, 729680, 894613, 1085880, 1305640, 1555912, 1838523, 2155056, 2506798, 2894688, 3319268, 3780640, 4278429
Offset: 0
References
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche VII.)
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..120
Programs
-
Magma
G := CoxeterGroup(GrpFPCox, "E8"); f := GrowthFunction(G); Coefficients(f);
-
Mathematica
CoefficientList[Series[(1 - x^2) (1 - x^8) (1 - x^12) (1 - x^14) (1 - x^18) (1 - x^20) (1 - x^24) (1 - x^30) / (1 - x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
PARI
Vec((1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)/(1-x)^8 + O(x^121)) \\ Jinyuan Wang, Mar 08 2020
Formula
G.f.: (1-x^2)*(1-x^8)*(1-x^12)*(1-x^14)*(1-x^18)*(1-x^20)*(1-x^24)*(1-x^30)/(1-x)^8.