A162553 G.f.: A(x) = exp( Sum_{n>=1} A162552(n)^2*x^n/n ) where the l.g.f. of A162552 is the log of the characteristic function of the squares.
1, 1, 1, 1, 3, 6, 10, 15, 18, 35, 73, 143, 230, 296, 416, 753, 1673, 2934, 4203, 5654, 9135, 17881, 33102, 52787, 73749, 107869, 189629, 359107, 619296, 923833, 1306855, 2065717, 3776424, 6823452, 10935160, 15822727, 23395694, 39675378
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 +... log(A(x)) = x + x^2/2 + x^3/3 + 9*x^4/4 + 16*x^5/5 + 25*x^6/6 + 36*x^7/7 +...+ A162552(n)^2*x^n/n +... Let L(x) = x - 1*x^2/2 + 1*x^3/3 + 3*x^4/4 - 4*x^5/5 + 5*x^6/6 - 6*x^7/7 +...+ A162552(n)*x^n/n +... then exp(L(x)) = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 +...+ x^(n^2) +... is the characteristic function of the squares (A010052).
Links
- Paul D. Hanna, Table of n, a(n), n = 0..330.
Programs
-
PARI
{a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)^2*k*x^k)+x*O(x^n));polcoeff(A,n)}
Comments