cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162567 Primes p such that pi(p) divides p-1 and/or p+1, where pi(p) is the number of primes <= p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 29, 37, 43, 349, 359, 1087, 1091, 3079, 8423, 64579, 64591, 64601, 64609, 64661, 64709, 481043, 481067, 1304707, 3523969, 3524249, 3524317, 3524387, 9558541, 9559799, 9560009, 9560039, 25874767, 70115921, 189962009
Offset: 1

Views

Author

Leroy Quet, Jul 06 2009

Keywords

Examples

			The 10th prime is 29. Since 10 divides 29+1 = 30, 29 is in the sequence.
The 12th prime is 37. Since 12 divides 37-1 = 36, 37 is in the sequence.
		

Crossrefs

Union of A048891 and A052013. - Michel Marcus, Mar 04 2019

Programs

  • Maple
    isA162567 := proc(p) RETURN ( (p-1) mod numtheory[pi](p) = 0 or (p+1) mod numtheory[pi](p) = 0 ) ; end: for n from 1 to 50000 do p := ithprime(n) ; if isA162567(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jul 30 2009
    with(numtheory): a := proc (n) if `mod`(ithprime(n)-1, pi(ithprime(n))) = 0 or `mod`(ithprime(n)+1, pi(ithprime(n))) = 0 then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 250000); # Emeric Deutsch, Jul 31 2009
  • Mathematica
    Select[Prime[Range[11000000]],Or@@Divisible[{#-1,#+1},PrimePi[#]]&] (* Harvey P. Dale, Sep 08 2012 *)

Formula

a(n) = A000040(A078931(n)). - Alois P. Heinz, Feb 20 2023

Extensions

a(10)-a(35) from Donovan Johnson, Jul 29 2009