A052013 Primes that are congruent to -1 mod n, where n is the index of the prime.
2, 3, 5, 7, 29, 349, 359, 1091, 3079, 8423, 64579, 64609, 64709, 481043, 481067, 3524317, 3524387, 9559799, 9560009, 9560039, 25874767, 70115921, 189962009, 189962189, 189964241, 189964259, 189964331, 189964367, 189968741, 189968921
Offset: 1
Keywords
Examples
29 is the tenth prime and 29 == -1 mod 10, so 29 is in the sequence. 31 is the eleventh prime but 31 == 9 mod 11, so 31 is not in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..108 (first 53 terms from Charles R Greathouse IV)
Programs
-
Mathematica
divbleQ[m_, n_] := Mod[m, n] == 0; A052013 = {}; Do[p = Prime[n]; If[divbleQ[p + 1, n], AppendTo[A052013, p]], {n, 10!}]; A052013 (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *) Select[Prime[Range[5000]], Divisible[# + 1, PrimePi[#]] &] (* Alonso del Arte, May 12 2017 *) Select[Table[{n,Prime[n]},{n,1056*10^4}],Mod[#[[2]],#[[1]]]==#[[1]]-1&][[All,2]] (* Harvey P. Dale, Oct 29 2022 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (Mod(p,primepi(p)) + 1 == 0, print1(p, ", "))) \\ Michel Marcus, Jan 09 2015
-
PARI
list(lim)=my(v=List(), n, t); forprime(p=2, lim, t=(p+1)/n++; if(denominator(t)==1, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 18 2016
Formula
a(n) = prime(A045924(n)). - Michel Marcus, Jan 09 2015
Comments