A162594 Differences of cubes: T(n,n) = n^3, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.
0, 1, 1, 6, 7, 8, 6, 12, 19, 27, 0, 6, 18, 37, 64, 0, 0, 6, 24, 61, 125, 0, 0, 0, 6, 30, 91, 216, 0, 0, 0, 0, 6, 36, 127, 343, 0, 0, 0, 0, 0, 6, 42, 169, 512, 0, 0, 0, 0, 0, 0, 6, 48, 217, 729, 0, 0, 0, 0, 0, 0, 0, 6, 54, 271, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 6, 60, 331, 1331
Offset: 0
Examples
Triangle begins: 0, 1, 1, 6, 7, 8, 6, 12, 19, 27, 0, 6, 18, 37, 64, 0, 0, 6, 24, 61, 125, ...
Links
- G. C. Greubel, Rows n = 0..99 of triangle, flattened
Crossrefs
Cf. A162593 (differences of squares).
Programs
-
Mathematica
T[n_, n_] := n^3; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 04 2018 *)
-
PARI
T(n, k) = if (k==n, n^3, T(n, k+1) - T(n-1, k)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 05 2018
Comments