A162607 a(n) = n*(n^2 - 4*n + 5)/2.
0, 1, 1, 3, 10, 25, 51, 91, 148, 225, 325, 451, 606, 793, 1015, 1275, 1576, 1921, 2313, 2755, 3250, 3801, 4411, 5083, 5820, 6625, 7501, 8451, 9478, 10585, 11775, 13051, 14416, 15873, 17425, 19075, 20826, 22681, 24643, 26715, 28900, 31201, 33621
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 25 2012
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)
Crossrefs
Cf. A159798.
Programs
-
Magma
[n*(n^2 - 4*n + 5)/2: n in [0..50]]; // Vincenzo Librandi, Dec 19 2012
-
Mathematica
f[n_]:=(n^3-n^2)/2+1; Table[f[n],{n,-1,5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) CoefficientList[Series[x*(1 - 3*x + 5*x^2)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 19 2012 *)
-
PARI
for(n=0,50, print1(n*(n^2-4*n+5)/2, ", ")) \\ G. C. Greubel, Apr 21 2018
Formula
G.f.: x*(1 - 3*x + 5*x^2)/(1 - x)^4. - Vincenzo Librandi, Dec 19 2012
E.g.f.: x*(x^2 - x + 2)*exp(x)/2. - G. C. Greubel, Apr 21 2018
Comments