cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A159798 Triangle read by rows in which row n lists n terms, starting with 1, such that the difference between successive terms is equal to n-3.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 4, 1, 3, 5, 7, 9, 1, 4, 7, 10, 13, 16, 1, 5, 9, 13, 17, 21, 25, 1, 6, 11, 16, 21, 26, 31, 36, 1, 7, 13, 19, 25, 31, 37, 43, 49, 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 1, 11
Offset: 1

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that for n>1 the last term of the n-th row is the square A000290(n-2).
Row sums are n*(n^2-4*n+5)/2 = 1, 1, 3, 10, 25, 51, 91, 148, 225, ... - R. J. Mathar, Jul 17 2009, Jul 20 2009
Row sums are the positive terms of A162607. - Omar E. Pol, Jul 24 2009

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  1;
  1,  2,  3,  4;
  1,  3,  5,  7,  9;
  1,  4,  7, 10, 13, 16;
  1,  5,  9, 13, 17, 21, 25;
  1,  6, 11, 16, 21, 26, 31, 36;
  1,  7, 13, 19, 25, 31, 37, 43, 49;
  1,  8, 15, 22, 29, 36, 43, 50, 57, 64;
  1,  9, 17, 25, 33, 41, 49, 57, 65, 73, 81;
  1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100;
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[1 + k*(n-3): k in [0..n-1]]: n in [1..15]]; // G. C. Greubel, Apr 21 2018
  • Mathematica
    Table[1 + k*(n-3), {n, 1, 20}, {k, 0, n-1}]// Flatten (* G. C. Greubel, Apr 21 2018 *)
  • PARI
    for(n=1, 20, for(k=0,n-1, print1(1 + k*(n-3), ", "))) \\ G. C. Greubel, Apr 21 2018
    

Formula

T(n,k) = 1 + k*(n-3), 0<=kR. J. Mathar, Jul 17 2009

Extensions

More terms from R. J. Mathar, Jul 17 2009
Typo in row sums corrected by R. J. Mathar, Jul 20 2009
Edited by Omar E. Pol, Jul 24 2009

A188947 a(n) = n^3 - 2*n^2 + 2*n + 1.

Original entry on oeis.org

2, 5, 16, 41, 86, 157, 260, 401, 586, 821, 1112, 1465, 1886, 2381, 2956, 3617, 4370, 5221, 6176, 7241, 8422, 9725, 11156, 12721, 14426, 16277, 18280, 20441, 22766, 25261, 27932, 30785, 33826, 37061, 40496, 44137, 47990, 52061, 56356, 60881, 65642, 70645
Offset: 1

Views

Author

Adeniji, Adenike, Apr 14 2011

Keywords

Comments

The original definition was "Identity difference partial one - one transformation semigroup is a semigroup having the property that the difference between max im(alpha) and min im(alpha) is not greater than 1. This is denoted by S = IDI_n for each n." [Needs editing.]
For all n >= 3, a(n) expressed in base n has the three digits n-2, 2, and 1; for example, a(16) in hexadecimal is "E21". For all n >= 3, a(n+1) expressed in base n is "1112". For all n >= 7, a(n+2) expressed in base n is "1465". - Mathew Englander, Jan 07 2021

Crossrefs

Cf. A027444, A053698, A056106 (first differences), A060354, A162607, A188377, A188716.

Programs

Formula

a(n) = (n+1) + n*(n-1)^2 = n^3 - 2*n^2 + 2*n + 1 = 1 + A053698(n-1).
G.f.: ( -x*(-2 + 3*x - 8*x^2 + x^3) ) / ( (x-1)^4 ). - R. J. Mathar, Apr 14 2011
a(n) = A060354(n) + A162607(n+1). - Lechoslaw Ratajczak, Sep 24 2020
E.g.f.: exp(x)*(1 + x)*(1 + x^2) - 1. - Stefano Spezia, Apr 10 2022

Extensions

Edited by N. J. A. Sloane, Apr 23 2011

A164845 a(n) = (6 + 10*n + 5*n^2 + n^3)/2.

Original entry on oeis.org

3, 11, 27, 54, 95, 153, 231, 332, 459, 615, 803, 1026, 1287, 1589, 1935, 2328, 2771, 3267, 3819, 4430, 5103, 5841, 6647, 7524, 8475, 9503, 10611, 11802, 13079, 14445, 15903, 17456, 19107, 20859, 22715, 24678, 26751, 28937, 31239, 33660, 36203, 38871
Offset: 0

Views

Author

Paul Curtz, Aug 28 2009

Keywords

Comments

Row sums of the triangle defined by non-interrupted runs in A080036.
If the sequence of integers is split at positions defined by A000124 we obtain A080036. Its runs of consecutive integers can be placed into rows of a triangle:
3;
5, 6;
8, 9, 10;
12, 13, 14, 15;
17, 18, 19, 20, 21;
...
The a(n) are the row sums of this triangle.
The a(n) are also the binomial transform of the quasi-finite sequence 3, 8, 8, 3, 0 (0 continued).
An associated integer sequence could be defined by a(n)/A026741(n+1) = 3, 11, 9, 27, ...

Crossrefs

Cf. A135278.

Programs

  • Magma
    [3+5*n+5*n^2/2+n^3/2: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    Table[(6 + 10*n + 5*n^2 + n^3)/2, {n,0,50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {3, 11, 27, 54}, 50] (* G. C. Greubel, Apr 21 2018 *)
  • PARI
    for(n=0, 50, print1((6+10*n+5*n^2+n^3)/2, ", ")) \\ G. C. Greubel, Apr 21 2018

Formula

a(n) = A162607(n+3) + n.
First differences: a(n+1) - a(n) = A104249(n+2), i.e., a(n) = a(n-1) + 3*n^2/2 + 7*n/2 +3.
Second differences: a(n+2) - 2*a(n+1) + a(n) = A016789(n+2).
a(n) = 2*a(n-1) - a(n-2) + 3*n + 5, n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3, n>2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3.
G.f.: (3-x+x^2)/(x-1)^4.
E.g.f.: (6 + 16*x + 8*x^2 + x^3)*exp(x)/2. - G. C. Greubel, Apr 21 2018

Extensions

Edited and extended by R. J. Mathar, Aug 31 2009
Corrected typo in recurrence, observed by Paul Curtz - R. J. Mathar, Sep 25 2009

A072277 Smallest integer > 1 which is both n-gonal and centered n-gonal.

Original entry on oeis.org

10, 25, 51, 91, 148, 225, 325, 451, 606, 793, 1015, 1275, 1576, 1921, 2313, 2755, 3250, 3801, 4411, 5083, 5820, 6625, 7501, 8451, 9478, 10585, 11775, 13051, 14416, 15873, 17425, 19075, 20826, 22681, 24643, 26715, 28900, 31201, 33621, 36163
Offset: 3

Views

Author

David W. Wilson, Jul 09 2002

Keywords

Comments

a(n) is the (n-1)-th centered n-gonal number. The n-th centered n-gonal number is A100119(n) and the (n+1)-th centered n-gonal number is A158842(n). - Mohammed Yaseen, Jun 06 2021

Examples

			a(4) = 25 is both square and centered square.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{10,25,51,91},50] (* or *) Table[(n^3-n^2+ 2)/2,{n,3,50}] (* Harvey P. Dale, Aug 19 2011 *)

Formula

a(n) = (n^3 - n^2 + 2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(3)=10, a(4)=25, a(5)=51, a(6)=91. - Harvey P. Dale, Aug 19 2011
G.f.: x^3*(-3*x^3 + 11*x^2 - 15*x + 10)/(x-1)^4. - Harvey P. Dale, Aug 19 2011

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Showing 1-5 of 5 results.