cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162668 a(n) = n*(n+1)*(n+2)*(n+3)/3.

Original entry on oeis.org

0, 8, 40, 120, 280, 560, 1008, 1680, 2640, 3960, 5720, 8008, 10920, 14560, 19040, 24480, 31008, 38760, 47880, 58520, 70840, 85008, 101200, 119600, 140400, 163800, 190008, 219240, 251720, 287680, 327360, 371008, 418880, 471240, 528360, 590520
Offset: 0

Views

Author

Vincenzo Librandi, Jul 10 2009

Keywords

Comments

a(n+3) is the number of equivalence classes of n-tuples from the set {1,0,-1} where the number of nonzero elements is 4 and two n-tuples are equivalent if they are negatives of each other. - Michael Somos, Oct 19 2022

Examples

			G.f. = 8*x + 40*x^2 + 120*x^3 + 280*x^4 + 560*x^5 + ... - _Michael Somos_, Oct 19 2022
		

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 8*A000332(n+3).
G.f.: 8*x/(1-x)^5. (End)
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} sin(x)^7 * cos(x)^(2*n-1) dx). - Francesco Daddi, Aug 02 2011
E.g.f.: x*(24 + 36*x + 12*x^2 + x^3)*exp(x)/3. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/6.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2) - 8/3.
Product_{n>=1} 1-1/a(n) = 4*cos(sqrt(13)*Pi/2)*cosh(sqrt(3)*Pi/2)/(3*Pi^2). (End)

Extensions

Definition factorized, offset corrected by R. J. Mathar, Jul 13 2009