cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A162676 Number of different fixed (possibly) disconnected n-ominoes bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

1, 4, 48, 956, 26490, 937342, 40291608, 2036155284, 118202408622, 7747410899954, 565695467415936, 45525704815717568, 4002930269944724664, 381750656962687053108, 39244733577786624617904, 4325973539461955182836900, 508971415418900757219557142
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Examples

			a(2)=4: the two rotations of the (connected) domino and the two rotations of the disconnected domino consisting of two squares connected at a vertex.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n^2,n]-2*Binomial[(n-1)n,n]+Binomial[(n-1)^2,n],{n,20}] (* Harvey P. Dale, Oct 01 2013 *)
  • PARI
    a(n) = binomial(n^2,n) - 2*binomial((n-1)*n,n) + binomial((n-1)^2,n); \\ Michel Marcus, Aug 30 2013

Formula

a(n) = binomial(n^2,n)-2*binomial((n-1)*n,n)+binomial((n-1)^2,n).

A162673 Number of different fixed (possibly) disconnected trominoes bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

0, 4, 48, 204, 580, 1320, 2604, 4648, 7704, 12060, 18040, 26004, 36348, 49504, 65940, 86160, 110704, 140148, 175104, 216220, 264180, 319704, 383548, 456504, 539400, 633100, 738504, 856548, 988204, 1134480, 1296420, 1475104, 1671648, 1887204
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Comments

Fixed quasi-trominoes.

Examples

			a(2)=4: the four rotations of the (connected) L tromino
		

Crossrefs

Cf. A162674, A162676, A162677, A094170 (free quasi-trominoes).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,4,48,204,580},40] (* Harvey P. Dale, Aug 09 2017 *)

Formula

a(n)=n*(n-1)*(3*n^2-3*n-2)/2.
G.f.: 4*x^2*(1+7*x+x^2)/(1-x)^5. [Colin Barker, Apr 25 2012]

A162677 Number of different fixed (possibly) disconnected polyominoes (of any area) bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

1, 10, 400, 57856, 31522816, 66605547520, 554222579875840, 18303191835587117056, 2408425353007592768536576, 1265177138001297870205254369280, 2655861110791164560222750369099284480
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Examples

			a(2)=10: the monomino, 4 dominoes (2 strictly disconnected), 4 rotations of the L tromino, and the square tetromino.
		

Crossrefs

Programs

  • PARI
    a(n) = 2^(n^2) - 2*2^((n-1)*n) + 2^((n-1)^2); \\ Michel Marcus, Aug 30 2013

Formula

a(n) = 2^(n^2)-2*2^((n-1)*n)+2^((n-1)^2).

A162675 Number of different fixed (possibly) disconnected pentominoes bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

0, 0, 114, 2910, 26490, 145110, 582540, 1891764, 5263020, 13010580, 29297070, 61162530, 119933814, 223098330, 396734520, 678599880, 1121985720, 1800456264, 2813598090, 4293914310, 6415006290, 9401194110, 13538735364, 19188810300
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Comments

Fixed quasi-pentominoes.

Examples

			a(3)=114: there are 114 rotations of the 21 free (possibly) disconnected pentominoes bounded (not necessarily tightly) by an 3*3 square; these include the F, P, T, U, V, W, X and Z (connected) pentominoes and 13 strictly disconnected pentominoes.
		

Crossrefs

Cf. A162674, A162676, A162677, A094172 (free quasi-pentominoes).

Formula

a(n) = n*(n-1)*(n-2)*(n+1)*(5*n^4-10*n^3-7*n^2+12*n+6)/24.
G.f.: x^3*(114+1884*x+4404*x^2+1884*x^3+114*x^4)/(1-x)^9. [Colin Barker, Apr 25 2012]

Extensions

Example moved to correct section, and ref to free quasi-pentominoes added by David Bevan, Mar 05 2011

A163434 Number of different fixed (possibly) disconnected tetrominoes bounded tightly by an n X n square.

Original entry on oeis.org

0, 1, 70, 425, 1426, 3577, 7526, 14065, 24130, 38801, 59302, 87001, 123410, 170185, 229126, 302177, 391426, 499105, 627590, 779401, 957202, 1163801, 1402150, 1675345, 1986626, 2339377, 2737126, 3183545, 3682450, 4237801, 4853702
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(2)=1: the (connected) square tetromino.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[(2 n^2 - 4 n + 1)*(3 n^2 - 6 n + 1), {n, 2, 50}]] (* or *) Join[{0}, LinearRecurrence[{5,-10,10,-5,1}, {1, 70, 425, 1426, 3577}, 50]] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    concat([0], Vec(x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5 + O(x^50))) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = (2n^2 -4n +1)*(3n^2 -6n +1), n>1.
G.f.: x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5. - Colin Barker, Apr 25 2012
E.g.f.: (6*x^4 + 12*x^3 - x^2 + x + 1)*exp(x) - 2 x - 1. - G. C. Greubel, Dec 23 2016
Showing 1-5 of 5 results.