cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A162676 Number of different fixed (possibly) disconnected n-ominoes bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

1, 4, 48, 956, 26490, 937342, 40291608, 2036155284, 118202408622, 7747410899954, 565695467415936, 45525704815717568, 4002930269944724664, 381750656962687053108, 39244733577786624617904, 4325973539461955182836900, 508971415418900757219557142
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Examples

			a(2)=4: the two rotations of the (connected) domino and the two rotations of the disconnected domino consisting of two squares connected at a vertex.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n^2,n]-2*Binomial[(n-1)n,n]+Binomial[(n-1)^2,n],{n,20}] (* Harvey P. Dale, Oct 01 2013 *)
  • PARI
    a(n) = binomial(n^2,n) - 2*binomial((n-1)*n,n) + binomial((n-1)^2,n); \\ Michel Marcus, Aug 30 2013

Formula

a(n) = binomial(n^2,n)-2*binomial((n-1)*n,n)+binomial((n-1)^2,n).

A162674 Number of different fixed (possibly) disconnected tetrominoes bounded (not necessarily tightly) by an n X n square.

Original entry on oeis.org

0, 1, 97, 956, 4780, 16745, 46921, 112672, 241536, 474585, 870265, 1508716, 2496572, 3972241, 6111665, 9134560, 13311136, 18969297, 26502321, 36377020, 49142380, 65438681, 86007097, 111699776, 143490400, 182485225, 229934601
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Comments

Fixed quasi-tetrominoes.

Examples

			a(2)=1: the (connected) square tetromino.
		

Crossrefs

Cf. A162673, A162675, A162676, A162677, A094171 (free quasi-tetrominoes).

Formula

a(n) = n*(n-1)*(8*n^4-16*n^3-9*n^2+17*n+8)/12.
G.f.: x^2*(1+90*x+298*x^2+90*x^3+x^4)/(1-x)^7. [Colin Barker, Apr 25 2012]

A162677 Number of different fixed (possibly) disconnected polyominoes (of any area) bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

1, 10, 400, 57856, 31522816, 66605547520, 554222579875840, 18303191835587117056, 2408425353007592768536576, 1265177138001297870205254369280, 2655861110791164560222750369099284480
Offset: 1

Views

Author

David Bevan, Jul 27 2009

Keywords

Examples

			a(2)=10: the monomino, 4 dominoes (2 strictly disconnected), 4 rotations of the L tromino, and the square tetromino.
		

Crossrefs

Programs

  • PARI
    a(n) = 2^(n^2) - 2*2^((n-1)*n) + 2^((n-1)^2); \\ Michel Marcus, Aug 30 2013

Formula

a(n) = 2^(n^2)-2*2^((n-1)*n)+2^((n-1)^2).

A163435 Number of different fixed (possibly) disconnected pentominoes bounded tightly by an n X n square.

Original entry on oeis.org

0, 0, 102, 1792, 11550, 46848, 144550, 371712, 838782, 1715200, 3247398, 5779200, 9774622, 15843072, 24766950, 37531648, 55357950, 79736832, 112466662, 155692800, 211949598, 284204800, 375906342, 491031552, 634138750, 810421248
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(3) = 102: there are 102 rotations of the 19 free (possibly) disconnected pentominoes bounded tightly by a 3 X 3 square; these include the F, T, V, W, X and Z (connected) pentominoes and 13 strictly disconnected free pentominoes.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[(2/3)*n^2*(n - 2)^2*(5*n^2 - 10*n + 2), {n, 2, 50}]] (* or *) Join[{0}, LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0, 102, 1792, 11550, 46848, 144550, 371712}, 50]] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    concat([0,0], Vec(2*x^3*(51+539*x+574*x^2+30*x^3+7*x^4-x^5)/ (1-x)^7 + O(x^50))) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = 2/3*n^2*(n-2)^2*(5*n^2-10*n+2), n>1.
G.f.: 2*x^3*(51+539*x+574*x^2+30*x^3+7*x^4-x^5)/(1-x)^7. - Colin Barker, Apr 25 2012
E.g.f.: (2/3)*x*(5*x^5 + 45*x^4 + 87*x^3 + 24*x^2 + 3*x - 3)*exp(x) + 2*x. - G. C. Greubel, Dec 23 2016
Showing 1-4 of 4 results.