A162740 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
1, 4, 12, 30, 72, 168, 390, 900, 2076, 4782, 11016, 25368, 58422, 134532, 309804, 713406, 1642824, 3783048, 8711526, 20060676, 46195260, 106377294, 244963080, 564094968, 1298984214, 2991269124, 6888221772, 15862029150, 36526694472, 84112781928, 193692865350
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009, page 31.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), page 186.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3).
Crossrefs
Cf. similar sequences listed in A265055.
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); b:=func ; Coefficients(R!(b(2)*b(3)/(1-2*x-2*x^2+3*x^3))); // Bruno Berselli, Dec 28 2015 - see Chapovalov et al. -
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4) )); // G. C. Greubel, Apr 25 2019 -
Mathematica
CoefficientList[Series[(x^3+2x^2+2x+1)/(3x^3-2x^2-2x+1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *) coxG[{3, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
-
PARI
my(x='x+O('x^40)); Vec((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)) \\ G. C. Greubel, Apr 25 2019
-
Sage
((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Formula
G.f.: (x^3 + 2*x^2 + 2*x + 1)/(3*x^3 - 2*x^2 - 2*x + 1).
From Bruno Berselli, Dec 28 2015: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) for n>3.
a(n) = -2 + ((-7+2*sqrt(13))*(1-sqrt(13))^n + (7+2*sqrt(13))*(1+sqrt(13))^n)/(3*sqrt(13)*2^(n-1)) for n>0. (End)
G.f.: (1+x)*(1-x^3)/(1 -3*x +5*x^3 -3*x^4). - G. C. Greubel, Apr 25 2019
Comments