cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162740 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 4, 12, 30, 72, 168, 390, 900, 2076, 4782, 11016, 25368, 58422, 134532, 309804, 713406, 1642824, 3783048, 8711526, 20060676, 46195260, 106377294, 244963080, 564094968, 1298984214, 2991269124, 6888221772, 15862029150, 36526694472, 84112781928, 193692865350
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
From Bruno Berselli, Dec 28 2015: (Start)
Also, expansion of b(2)*b(3)/(1 - 2*x - 2*x^2 + 3*x^3), where b(k) = (1-x^k)/(1-x).
This is also the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_22 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
(End)

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(3)/(1-2*x-2*x^2+3*x^3))); // Bruno Berselli, Dec 28 2015 - see Chapovalov et al.
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(x^3+2x^2+2x+1)/(3x^3-2x^2-2x+1), {x, 0, 40}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{3, 3, -2, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-3*x+5*x^3-3*x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (x^3 + 2*x^2 + 2*x + 1)/(3*x^3 - 2*x^2 - 2*x + 1).
From Bruno Berselli, Dec 28 2015: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) for n>3.
a(n) = -2 + ((-7+2*sqrt(13))*(1-sqrt(13))^n + (7+2*sqrt(13))*(1+sqrt(13))^n)/(3*sqrt(13)*2^(n-1)) for n>0. (End)
G.f.: (1+x)*(1-x^3)/(1 -3*x +5*x^3 -3*x^4). - G. C. Greubel, Apr 25 2019