A162947 Numbers k such that the product of all divisors of k equals k^3.
1, 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1
Examples
18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- David A. Corneth, PARI program
Crossrefs
Programs
-
Mathematica
Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *) Join[{1},Select[Range[430],DivisorSigma[0,#]==6 &]] (* Stefano Spezia, Jul 14 2025 *)
-
PARI
isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
-
PARI
\\ See Corneth link
-
Python
from itertools import chain, count, islice from sympy import divisor_count def A162947_gen(): # generator of terms return chain((1,),filter(lambda n:divisor_count(n)==6,count(2))) A162947_list = list(islice(A162947_gen(),20)) # Chai Wah Wu, Jun 25 2022
Formula
{1} UNION A030515. - R. J. Mathar, Jul 19 2009
Extensions
Edited by R. J. Mathar, Jul 19 2009
Comments