cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162947 Numbers k such that the product of all divisors of k equals k^3.

Original entry on oeis.org

1, 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Claudio Meller, Jul 18 2009

Keywords

Comments

Contains the terms of A054753 (products p*q^2 of a prime p and the square of a different prime q), 1, and p^5, where p is prime.
Numbers k such that k^2 is equal to the product of proper divisors of k. - Juri-Stepan Gerasimov, May 03 2011

Examples

			18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
		

Crossrefs

Cf. A111398, A030628. - R. J. Mathar, Jul 19 2009
Cf. A008578 (product of divisors equals n), A007422 (product of divisors equals n^2).

Programs

  • Mathematica
    Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *)
    Join[{1},Select[Range[430],DivisorSigma[0,#]==6 &]] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
    
  • PARI
    \\ See Corneth link
    
  • Python
    from itertools import chain, count, islice
    from sympy import divisor_count
    def A162947_gen(): # generator of terms
        return chain((1,),filter(lambda n:divisor_count(n)==6,count(2)))
    A162947_list = list(islice(A162947_gen(),20)) # Chai Wah Wu, Jun 25 2022

Formula

{n: A007955(n) = A000578(n)}. - R. J. Mathar, Jul 19 2009
{1} UNION A030515. - R. J. Mathar, Jul 19 2009

Extensions

Edited by R. J. Mathar, Jul 19 2009