A163181 T(n,k) is the number of weak compositions of k into n parts no greater than (n-1) for n>=1, 0<=k<=n(n-1).
1, 1, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 252, 456, 756, 1161, 1666, 2247, 2856, 3431, 3906, 4221, 4332, 4221, 3906, 3431
Offset: 1
Examples
T(3,4) = 6 because there are 6 ternary sequences of length three that sum to 4: [0, 2, 2], [1, 1, 2], [1, 2, 1], [2, 0, 2], [2, 1, 1], [2, 2, 0].
Links
- Alois P. Heinz, Rows n = 1..32, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k, l) option remember; `if`(k=0, 1, `if`(l=0, 0, add(b(n, k-j, l-1), j=0..min(n-1, k)))) end: T:= (n, k)-> b(n, k, n): seq(seq(T(n, k), k=0..n*(n-1)), n=1..8); # Alois P. Heinz, Feb 21 2013
-
Mathematica
(*warning very inefficient*) Table[Distribution[Map[Total, Strings[Range[n], n]]], {n, 1, 6}]//Grid nn=100;Table[CoefficientList[Series[Sum[x^i,{i,0,n-1}]^n,{x,0,nn}],x],{n,1,10}]//Grid (* Geoffrey Critzer, Feb 21 2013*)
Formula
O.g.f. for row n is ((1-x^n)/(1-x))^n. For k<=(n-1), T(n,k) = C(n+k-1,k).
Comments