cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181567 Triangle read by rows: T(n,k) is coefficient of k-th power in expansion of ((x^(n+1)-1)/(x-1))^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780, 780, 735, 651, 540, 420, 305, 205, 126, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 252, 462, 786, 1251
Offset: 0

Views

Author

Matthew Vandermast, Oct 31 2010

Keywords

Comments

In each row n>=0, k takes values from 0 to n^2 inclusive. Row sums equal A000169(n+1). All rows are palindromic. Row n is also row n of the (n+1)-nomial array (e.g., row 1 is also row 1 of A007318).
T(n,k) gives the number of divisors of A181555(n) with k prime factors counted with multiplicity. See also A001222, A071207, A146291, A146292.
T(n,k) is the number of size k submultisets of the so-called regular multiset {1_1,1_2,...,1_(n-1),1_n, ... ,i_1,i_2,...,i_(n-1),i_n, ... ,n_1,n_2,...,n_(n-1),n_n} (which contains n copies of i for 0 < i < n). - Thomas Wieder, Dec 28 2013

Examples

			Rows begin:
1;
1,1;
1,2,3,2,1;
1,3,6,10,12,12,10,6,3,1;...
T(n=3,k=4) = 12 because we have 12 submultisets (without regard of the order of elements) of size k=4 for the regular multiset (n=3) {1, 1, 1, 2, 2, 2, 3, 3, 3}: {1, 1, 1, 2}, {1, 1, 1, 3}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 3, 3}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 3}, {1, 3, 3, 3}, {2, 2, 2, 3}, {2, 2, 3, 3}, {2, 3, 3, 3}.
		

Crossrefs

A163181 gives row n of n-nomial array. See also A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890.

Programs

  • Maple
    b:= proc(n, k, i) option remember; `if`(k=0, 1,
         `if`(i<1, 0, add(b(n, k-j, i-1), j=0..n)))
        end:
    T:= (n, k)-> b(n, k, n):
    seq(seq(T(n, k), k=0..n^2), n=0..8); # Alois P. Heinz, Jul 04 2016
  • Mathematica
    row[n_] := CoefficientList[((x^(n+1) - 1)/(x-1))^n + O[x]^(n^2+1), x]; Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Apr 06 2017 *)

A273975 Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10
Offset: 1

Views

Author

Andrey Zabolotskiy, Nov 10 2016

Keywords

Comments

Equivalently, T(k,n,h) is the number of ordered sets of n nonnegative integers < k with the sum equal to h.
From Juan Pablo Herrera P., Nov 21 2016: (Start)
T(k,n,h) is the number of possible ways of randomly selecting h cards from k-1 sets, each with n different playing cards. It is also the number of lattice paths from (0,0) to (n,h) using steps (1,0), (1,1), (1,2), ..., (1,k-1).
Shallow diagonal sums of each triangle with fixed k give the k-bonacci numbers. (End)
T(k,n,h) is the number of n-dimensional grid points of a k X k X ... X k grid, which are lying in the (n-1)-dimensional hyperplane which is at an L1 distance of h from one of the grid's corners, and normal to the corresponding main diagonal of the grid. - Eitan Y. Levine, Apr 23 2023

Examples

			For first few k and for first few n, the rows with h = 0..n*(k-1) are given:
k=1:  1;  1;  1;  1;  1; ...
k=2:  1;  1, 1;  1, 2, 1;  1, 3, 3, 1;  1, 4, 6, 4, 1; ...
k=3:  1;  1, 1, 1;  1, 2, 3, 2, 1;  1, 3, 6, 7, 6, 3, 1; ...
k=4:  1;  1, 1, 1, 1;  1, 2, 3, 4, 3, 2, 1; ...
For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6.
From _Eitan Y. Levine_, Apr 23 2023: (Start)
Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle):
  1  0  0 -3  0  0  3  0  0 -1
  1  1  1 -2 -2 -2  1  1  1
  1  2  3  1 -1 -3 -2 -1
  1  3  6  7  6  3  1
which is T(3,3,h). (End)
		

Crossrefs

k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Arrays for fixed n=0..6: A000012, A000012, A004737, A109439, A277949, A277950, A277951.
Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein.
Triangle n=k-1: A181567. Triangle n=k: A163181.

Programs

  • Mathematica
    a = Table[CoefficientList[Sum[x^(h-1),{h,k}]^n,x],{k,10},{n,0,9}];
    Flatten@Table[a[[s-n,n+1]],{s,10},{n,0,s-1}]
    (* alternate program *)
    row[k_, n_] := Nest[Accumulate,Upsample[Table[((-1)^j)*Binomial[n,j],{j,0,n}],k],n][[;;n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *)

Formula

T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023]
From Eitan Y. Levine, Apr 23 2023: (Start)
(T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where:
(x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)),
f repeats n times,
f((x_i){i=0..m}) = (Sum{j=0..i} x_j)_{i=0..m} is the cumulative sum function,
g((x_i){i=0..m}) = (x(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements,
and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End)
From Eitan Y. Levine, Jul 27 2023: (Start)
Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link:
T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i)
T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End)
Showing 1-2 of 2 results.