cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A181555 a(n) = A002110(n)^n.

Original entry on oeis.org

1, 2, 36, 27000, 1944810000, 65774855015100000, 733384949590939374729000000, 9037114296609938214167920266348510000000, 78354300210436852307898467208663359164858967744100000000
Offset: 0

Views

Author

Matthew Vandermast, Oct 31 2010

Keywords

Comments

For n>0, a(n)= first counting number whose prime signature consists of n repeated n times (cf. A002024). Subsequence of A025487.

Examples

			a(4) = 1944810000 = 210^4 = 2^4 * 3^4 * 5^4 * 7^4.
		

Crossrefs

A061742(n) = A002110(n)^2. See also A006939, A066120, A166475, A167448.
A000005(a(n)) = A000169(n). The divisors of a(n) appear as the first A000169(n) terms of A178479, with A178479(A000169(n)) = a(n).
A071207(n, k) gives the number of divisors of n with (n-k) distinct prime factors, A181567(n, k) gives the number of divisors of n with k prime factors counted with multiplicity.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Product[Prime[i], {i, 1, n}]^n; Array[a, 9, 0] (* Amiram Eldar, Aug 08 2019 *)

Formula

a(n) = A079474(2n,n). - Alois P. Heinz, Aug 22 2019

A071207 Triangular array T(n,k) read by rows, giving number of rooted trees on the vertex set {1..n+1} where k children of the root have a label smaller than the label of the root.

Original entry on oeis.org

1, 1, 1, 4, 4, 1, 27, 27, 9, 1, 256, 256, 96, 16, 1, 3125, 3125, 1250, 250, 25, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1, 387420489
Offset: 0

Views

Author

Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002

Keywords

Comments

The n-th term of the n-th binomial transform of a sequence {b} is given by {d} where d(n) = sum(k=0,n,T(n,k)*b(k)) and T(n,k)=binomial(n,k)*n^(n-k); such diagonals are related to the hyperbinomial transform (A088956). - Paul D. Hanna, Nov 04 2003
T(n,k) gives the number of divisors of A181555(n) with (n-k) distinct prime factors. See also A001221, A146289, A146290, A181567. - Matthew Vandermast, Oct 31 2010
T(n,k) is the number of partial functions on {1,2,...,n} leaving exactly k elements undefined. Row sums = A000169. - Geoffrey Critzer, Jan 08 2012
As a triangular matrix, transforms rows into diagonals in the table of coefficients of successive iterations of x/(1-x). - Paul D. Hanna, Jan 19 2014
Also the number of rooted trees on n+1 labeled vertices in which some specified vertex (say, vertex 1) has k children. - Alan Sokal, Jul 22 2022

Examples

			1
1     1
4     4     1
27    27    9     1
256   256   96    16    1
3125  3125  1250  250   25    1
46656 46656 19440 4320  540   36    1
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*n^(n-k): seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    Prepend[Flatten[ Table[Table[Binomial[n, k] n^(n - k), {k, 0, n}], {n, 1, 8}]], 1]  (* Geoffrey Critzer, Jan 08 2012 *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,binomial(n,k)*n^(n-k))
    
  • PARI
    /* Transforms rows into diagonals in the iterations of x/(1-x): */
    {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 19 2014

Formula

T(n,k) = binomial(n, k)*n^(n-k).
E.g.f.: (-LambertW(-y)/y)^x/(1+LambertW(-y)). - Vladeta Jovovic

Extensions

Name edited by Alan Sokal, Jul 22 2022

A273975 Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10
Offset: 1

Views

Author

Andrey Zabolotskiy, Nov 10 2016

Keywords

Comments

Equivalently, T(k,n,h) is the number of ordered sets of n nonnegative integers < k with the sum equal to h.
From Juan Pablo Herrera P., Nov 21 2016: (Start)
T(k,n,h) is the number of possible ways of randomly selecting h cards from k-1 sets, each with n different playing cards. It is also the number of lattice paths from (0,0) to (n,h) using steps (1,0), (1,1), (1,2), ..., (1,k-1).
Shallow diagonal sums of each triangle with fixed k give the k-bonacci numbers. (End)
T(k,n,h) is the number of n-dimensional grid points of a k X k X ... X k grid, which are lying in the (n-1)-dimensional hyperplane which is at an L1 distance of h from one of the grid's corners, and normal to the corresponding main diagonal of the grid. - Eitan Y. Levine, Apr 23 2023

Examples

			For first few k and for first few n, the rows with h = 0..n*(k-1) are given:
k=1:  1;  1;  1;  1;  1; ...
k=2:  1;  1, 1;  1, 2, 1;  1, 3, 3, 1;  1, 4, 6, 4, 1; ...
k=3:  1;  1, 1, 1;  1, 2, 3, 2, 1;  1, 3, 6, 7, 6, 3, 1; ...
k=4:  1;  1, 1, 1, 1;  1, 2, 3, 4, 3, 2, 1; ...
For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6.
From _Eitan Y. Levine_, Apr 23 2023: (Start)
Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle):
  1  0  0 -3  0  0  3  0  0 -1
  1  1  1 -2 -2 -2  1  1  1
  1  2  3  1 -1 -3 -2 -1
  1  3  6  7  6  3  1
which is T(3,3,h). (End)
		

Crossrefs

k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Arrays for fixed n=0..6: A000012, A000012, A004737, A109439, A277949, A277950, A277951.
Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein.
Triangle n=k-1: A181567. Triangle n=k: A163181.

Programs

  • Mathematica
    a = Table[CoefficientList[Sum[x^(h-1),{h,k}]^n,x],{k,10},{n,0,9}];
    Flatten@Table[a[[s-n,n+1]],{s,10},{n,0,s-1}]
    (* alternate program *)
    row[k_, n_] := Nest[Accumulate,Upsample[Table[((-1)^j)*Binomial[n,j],{j,0,n}],k],n][[;;n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *)

Formula

T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023]
From Eitan Y. Levine, Apr 23 2023: (Start)
(T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where:
(x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)),
f repeats n times,
f((x_i){i=0..m}) = (Sum{j=0..i} x_j)_{i=0..m} is the cumulative sum function,
g((x_i){i=0..m}) = (x(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements,
and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End)
From Eitan Y. Levine, Jul 27 2023: (Start)
Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link:
T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i)
T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End)

A163181 T(n,k) is the number of weak compositions of k into n parts no greater than (n-1) for n>=1, 0<=k<=n(n-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 252, 456, 756, 1161, 1666, 2247, 2856, 3431, 3906, 4221, 4332, 4221, 3906, 3431
Offset: 1

Views

Author

Geoffrey Critzer, Jul 22 2009

Keywords

Comments

T(n,k) is the number of length n sequences on an alphabet of {0,1,2,...,n-1} that have a sum of k. Equivalently T(n,k) is the number of functions f:{1,2,...,n}->{0,1,2,...,n-1} such that Sum(f(i)=k, i=1...n).
Row n is also row n of the array of q-nomial coefficients. - Matthew Vandermast, Oct 31 2010

Examples

			T(3,4) = 6 because there are 6 ternary sequences of length three that sum to 4: [0, 2, 2], [1, 1, 2], [1, 2, 1], [2, 0, 2], [2, 1, 1], [2, 2, 0].
		

Crossrefs

The maximum of row n is in column k=n(n-1)/2 = A000217(n-1).
For q-nomial arrays, see A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890. See also A181567. - Matthew Vandermast, Oct 31 2010

Programs

  • Maple
    b:= proc(n, k, l) option remember; `if`(k=0, 1,
          `if`(l=0, 0, add(b(n, k-j, l-1), j=0..min(n-1, k))))
        end:
    T:= (n, k)-> b(n, k, n):
    seq(seq(T(n, k), k=0..n*(n-1)), n=1..8);  # Alois P. Heinz, Feb 21 2013
  • Mathematica
    (*warning very inefficient*) Table[Distribution[Map[Total, Strings[Range[n], n]]], {n, 1, 6}]//Grid
    nn=100;Table[CoefficientList[Series[Sum[x^i,{i,0,n-1}]^n,{x,0,nn}],x],{n,1,10}]//Grid (* Geoffrey Critzer, Feb 21 2013*)

Formula

O.g.f. for row n is ((1-x^n)/(1-x))^n. For k<=(n-1), T(n,k) = C(n+k-1,k).

A234574 T(n,k) is the number of size k ordered submultisets of the regular multiset {1_1,1_2,...,1_(n-1),1_n, ... ,i_1,i_2,...,i_(n-1),i_n, ... ,n_1,n_2,...,n_(n-1),n_n} (which contains n copies of i for 1 <= i <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 6, 1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680, 1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000, 1, 5, 25, 125, 625, 3125, 15620, 77980, 388220, 1923180, 9454620
Offset: 0

Views

Author

Thomas Wieder, Dec 29 2013

Keywords

Comments

A181567 gives the case for unordered submultisets.

Examples

			For n=2 we have the regular multiset L = [1,1,2,2].
We get the following ordered submultisets from L:
For k=0 1 multiset: []
For k=1 2 multisets: [1], [2]
For k=2 4 multisets: [1,1], [1,2], [2,1], [2,2]
For k=3 6 multisets: [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1]
For k=4 6 multisets: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1].
Triangle begins with:
  1;
  1, 1;
  1, 2, 4, 6, 6;
  1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680;
  1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000;
  ...
		

Crossrefs

Cf. A181567.
Row sums give A274762.

Programs

  • Maple
    # first Maple program: see link above
    # second Maple program:
    b:= proc(n, k, i) option remember; `if`(k=0, 1,
         `if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..n)))
        end:
    T:= (n, k)-> b(n, k, n)*k!:
    seq(seq(T(n, k), k=0..n^2), n=0..5); # Alois P. Heinz, Jul 04 2016

Extensions

More terms from Alois P. Heinz, Jul 04 2016

A329709 Triangle, read by rows, where the n-th row lists the (n^2+1) coefficients of (1+2*x+...+(n+1)*x^n)^n.

Original entry on oeis.org

1, 1, 2, 1, 4, 10, 12, 9, 1, 6, 21, 56, 111, 174, 219, 204, 144, 64, 1, 8, 36, 120, 330, 768, 1544, 2728, 4275, 5920, 7256, 7848, 7386, 5880, 3900, 2000, 625, 1, 10, 55, 220, 715, 2002, 4970, 11120, 22685, 42570, 73953, 119340, 179305, 251230, 328450, 400304, 453695, 476870, 462815, 411740, 332045, 239070, 150840, 79920, 32400, 7776
Offset: 0

Views

Author

Seiichi Manyama, Feb 29 2020

Keywords

Examples

			Triangle begins:
  1;
  1, 2;
  1, 4, 10, 12,   9;
  1, 6, 21, 56, 111, 174, 219, 204, 144, 64;
  ...
		

Crossrefs

Programs

  • PARI
    for(n=0, 5, print(Vecrev(sum(k=0, n, (k+1)*x^k)^n), ", "))
Showing 1-6 of 6 results.