A163224 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1, 41, 1640, 65600, 2623180, 104894400, 4194464820, 167726145600, 6706948607580, 268194081870000, 10724409825744420, 428842296999090000, 17148329715447559980, 685718769084764781600, 27420176663127165184020
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..620
- Index entries for linear recurrences with constant coefficients, signature (39,39,39,-780).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5) )); // G. C. Greubel, Apr 30 2019 -
Mathematica
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3-39*t^2 - 39*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[ {39, 39, 39, -780}, {41,1640,65600,2623180} 20]] (* G. C. Greubel, Dec 11 2016 *) coxG[{4,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 18 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3- 39*t^2-39*t+1)) \\ G. C. Greubel, Dec 11 2016
-
Sage
((1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
Formula
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
a(n) = 39*a(n-1)+39*a(n-2)+39*a(n-3)-780*a(n-4). - Wesley Ivan Hurt, May 06 2021
Comments