cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163268 Primes p such that 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 is prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 31, 61, 73, 89, 149, 163, 251, 349, 353, 461, 523, 599, 647, 863, 941, 947, 1087, 1117, 1229, 1277, 1291, 1297, 1409, 1439, 1489, 1567, 1579, 1609, 1627, 1753, 1783, 1831, 2039, 2131, 2293, 2531, 2609, 2753, 2861, 3037, 3163, 3167, 3299
Offset: 1

Views

Author

Keywords

Comments

Primes in A100330. The generated prime numbers are exactly A194257. [Bernard Schott, Dec 21 2012]

Crossrefs

Programs

  • Maple
    select(p -> isprime(p) and isprime(1+p+p^2+p^3+p^4+p^5+p^6), [2,seq(i,i=3..10000,2)]); # Robert Israel, May 05 2017
  • Mathematica
    f[n_]:=1+n+n^2+n^3+n^4+n^5+n^6; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst,p]], {n,7!}]; lst
    Select[Prime[Range[500]],PrimeQ[Total[#^Range[0,6]]]&] (* Harvey P. Dale, Jul 13 2022 *)
  • PARI
    n=0;forprime(p=2,10000,isprime((p^7-1)/(p-1))&&print(n++" "p))\\ Zak Seidov, Mar 09 2013

Extensions

Edited (but not checked) by N. J. A. Sloane, Jul 25 2009