cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A194257 Primes of the form p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.

Original entry on oeis.org

127, 1093, 19531, 5229043, 25646167, 917087137, 52379047267, 153436090543, 502628805631, 11016462577051, 18871143464293, 251059142817757, 1812169199976451, 1940350890330343
Offset: 1

Views

Author

Bernard Schott, Dec 21 2012

Keywords

Comments

These primes are generated by exactly A163268.
This sequence is included in A088550.
These numbers are repunit primes 1111111_n, so they are Brazilian primes and are terms of A085104.
Subsequence of A088550. - Hartmut F. W. Hoft, May 05 2017

Crossrefs

Programs

  • Maple
    select(isprime, map(p -> add(p^i,i=0..6), select(isprime, [2,seq(i,i=3..1000,2)]))); # Robert Israel, May 05 2017
  • Mathematica
    a194257[n_] := Select[Map[(Prime[#]^7-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a194257[70] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[Total[p^Range[0,6]],{p,Prime[Range[100]]}],PrimeQ] (* Harvey P. Dale, Mar 09 2024 *)

Formula

a(n) = A193574(A163268(n)^6). - Hartmut F. W. Hoft, May 08 2017

A259417 Even powers of the odd primes listed in increasing order.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 26 2015

Keywords

Comments

Each of the following sequences, p^(q-1) with p >= 2 and q > 2 primes, except their respective first elements, powers of 2, is a subsequence:
A001248(p) = p^2, A030514(p) = p^4, A030516(p) = p^6,
A030629(p) = p^10, A030631(p) = p^12, A030635(p) = p^16,
A030637(p) = p^18, A137486(p) = p^22, A137492(p) = p^28,
A139571(p) = p^30, A139572(p) = p^36, A139573(p) = p^40,
A139574(p) = p^42, A139575(p) = p^46, A173533(p) = p^52,
A183062(p) = p^58, A183085(p) = p^60.
See also the link to the OEIS Wiki.
The sequences A053182(n)^2, A065509(n)^4, A163268(n)^6 and A240693(n)^10 are subsequences of this sequence.
The odd numbers in A023194 are a subsequence of this sequence.

Examples

			a(11) = 5^4 = 625 is followed by a(12) = 3^6 = 729 since no even power of an odd prime falls between them.
		

Programs

  • Mathematica
    a259417[bound_] := Module[{q, h, column = {}}, For[q = Prime[2], q^2 <= bound, q = NextPrime[q], For[h = 1, q^(2*h) <= bound, h++, AppendTo[column, q^(2*h)]]]; Prepend[Sort[column], 1]]
    a259417[25000] (* data *)
    With[{upto=25000},Select[Union[Flatten[Table[Prime[Range[2,Floor[ Sqrt[ upto]]]]^n,{n,0,Log[2,upto],2}]]],#<=upto&]] (* Harvey P. Dale, Nov 25 2017 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (P(2*k) - 1/2^(2*k)) = 1.21835996432366585110..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022

A339472 Integers k for which there is a divisor d, such that sigma(k) = d*sigma(d).

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 117, 120, 132, 140, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1287, 1406, 1428, 1680, 1722, 1892, 2016, 2184, 2256, 2480, 2793, 2862, 3276, 3540, 3640, 3782, 3960, 4060, 4556, 4560, 4650, 5112, 5382, 5402, 5460, 6120, 6320, 6552
Offset: 1

Views

Author

Marius A. Burtea, Dec 06 2020

Keywords

Comments

All terms are nonprimes.
The sequence includes all numbers of the form p*(p + 1) with p prime. Indeed: sigma(p*(p + 1)) = sigma(p)*sigma(p + 1) = (p + 1)*sigma(p + 1). So A036690 is a subsequence. Thus, the sequence is infinite.
Let k >= 1. If p and q = 1 + p + ... + p^(2*k) are prime numbers, then m = p^(2*k)*q is a term. Indeed, sigma(m) = sigma(p^(2*k)*q) = sigma(p^(2*k))*sigma(q) = q*sigma(q).
p is in: A053182 (k = 1), A065509 (k = 2), A163268 (k = 3), and A240693 (k = 5).
For k = 4 there are no prime p because 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 + p^7 + p^8 = (p^6 + p^3 + 1)*(p^2 + p + 1).
If m = 2^(p - 1)*(2^p - 1), p >= 1, (see A006516), then sigma(m) = sigma(2^(p - 1)*(2^p - 1)) = sigma(2^(p - 1))*sigma(2^p - 1) = (2^p - 1)*sigma(2^p - 1), so m is a term.
Thus, A006516(n) and A000396(n), for n >= 1, are terms.

Examples

			sigma(6) = 12 = 3*4 = 3*sigma(3), so 6 is a term.
sigma(12) = 28 = 4*7 = 4*sigma(4), so 12 is a term.
sigma(30) = 72 = 6*12 = 6*sigma(6), so 30 is a term.
sigma(56) = 120 = 8*15 = 8*sigma(8), so 56 is a term.
sigma(117) = 182 = 13*14 = 13*sigma(13), so 117 is a term.
		

Crossrefs

Programs

  • Magma
    s:=func; [n:n in [1..6600]|s(n)];
    
  • Mathematica
    q[n_] := Module[{d = Divisors[n], s}, s = Plus @@ d; AnyTrue[d, #*DivisorSigma[1, #] == s &]]; Select[Range[7000], q] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    isok(k) = my(sk=sigma(k)); fordiv(k, d, if (d*sigma(d) == sk, return(1))); \\ Michel Marcus, Dec 06 2020

A288939 Nonprime numbers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.

Original entry on oeis.org

1, 6, 14, 26, 38, 40, 46, 56, 60, 66, 68, 72, 80, 87, 93, 95, 115, 122, 126, 128, 146, 156, 158, 160, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 350, 363, 381, 395, 399, 404, 405, 417, 418, 436, 438, 447, 450
Offset: 1

Views

Author

Bernard Schott, Jun 19 2017

Keywords

Comments

A163268 Union {This sequence} = A100330.
The corresponding prime numbers k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 = 1111111_k are in A194194; all these Brazilian primes belong to A085104 and A285017.

Examples

			6 is in the sequence because 6^6 + 6^5 + 6^4 + 6^3 + 6^2 + 6 + 1 = 1111111_6 = 55987 which is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do s(n):= 1+n+n^2+n^3+n^4+n^5+n^6;
    if not isprime(n) and isprime(s(n)) then print(n,s(n)) else fi; od:
  • Mathematica
    Select[Range@ 450, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 6]]] &] (* Michael De Vlieger, Jun 19 2017 *)
  • PARI
    isok(n) = !isprime(n) && isprime(1+n+n^2+n^3+n^4+n^5+n^6); \\ Michel Marcus, Jun 19 2017
    
  • Python
    from sympy import isprime
    A288939_list = [n for n in range(10**3) if not isprime(n) and isprime(n*(n*(n*(n*(n*(n + 1) + 1) + 1) + 1) + 1) + 1)] # Chai Wah Wu, Jul 13 2017
Showing 1-4 of 4 results.