cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163303 a(n) = n^3 + 73*n^2 + n + 67.

Original entry on oeis.org

67, 142, 369, 754, 1303, 2022, 2917, 3994, 5259, 6718, 8377, 10242, 12319, 14614, 17133, 19882, 22867, 26094, 29569, 33298, 37287, 41542, 46069, 50874, 55963, 61342, 67017, 72994, 79279, 85878, 92797, 100042, 107619, 115534, 123793, 132402
Offset: 0

Views

Author

Vincenzo Librandi, Jul 24 2009, Jul 25 2009

Keywords

Comments

Sequences generated by primitive polynomial J(p)=J(1031), for k=3.
Comment (entirely taken from Cugiani's text - see References) from Vincenzo Librandi , Aug 23 2011: (Start)
This deals with primitive polynomials in GF_k(p). There are p^k monic k-th order polynomials J(p) = x^k + a(k-1)*x^(k-1) + ... + a(0), because there are k independent coefficients a(.), each restricted modulo the prime p. phi(p^k-1)/k of these polynomials are primitive, where phi=A000010. [Example for p=7 and k=2: phi(7^2-1)/2 = phi(48)/2 = 16/2=8. See A011260 for p=2, A027385 for p=3, A027741 for p=5 etc.] Of these sets of primitive polynomials we select with p=1031 the polynomial x^3+73*x^2+x+67 for k=3 in A163303 and x^4+984*x^3+90*x^2+394-x+858 for k=4 in A163304 by the following criteria (This could be extended to k=5, 6,...): Let r = (p^k -1)/(p-1). We demand (see Theorem 1 in Hansen-Mullen)
i) (-1)^k a(0) is a primitive element of J(p).
ii) The remainder of the division of x^r through the polynomial equals (-1)^k a(0).
iii) The remainder of the division of x^(r/q) through the polynomial must have positive degree for each prime divisor q|r.
(End)

References

  • Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp. 78-84

Crossrefs

Cf. A163304.

Programs

  • Magma
    [n^3+73*n^2+n+67: n in [0..40]];
    
  • Magma
    I:=[67,142,369,754]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
    
  • Mathematica
    Table[n^3 + 73 n^2 + n + 67, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {67, 142, 369, 754}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
  • PARI
    first(m)=vector(m,i,i--;i^3 + 73*i^2 + i + 67) \\ Anders Hellström, Sep 13 2015

Formula

G.f.: ( 67-126*x+203*x^2-138*x^3 ) / (x-1)^4 . - R. J. Mathar, Aug 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Sep 13 2015
E.g.f: (67 + 75*x + 76*x^2 + x^3)*exp(x). - G. C. Greubel, Dec 18 2016