A163304 a(n) = n^4 + 984*n^3 + 902*n^2 + 394*n + 858.
858, 3139, 13142, 36807, 80098, 149003, 249534, 387727, 569642, 801363, 1088998, 1438679, 1856562, 2348827, 2921678, 3581343, 4334074, 5186147, 6143862, 7213543, 8401538, 9714219, 11157982, 12739247, 14464458, 16340083, 18372614, 20568567, 22934482, 25476923
Offset: 0
References
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp.78-84
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A163303.
Programs
-
Magma
[n^4+984*n^3+902*n^2+394*n+858: n in [0..30]]; // Vincenzo Librandi, Aug 17 2011
-
Mathematica
Table[n^4+984n^3+902n^2+394n+858,{n,0,30}] (* Harvey P. Dale, Aug 16 2011 *)
-
PARI
a(n) = n^4+984*n^3+902*n^2+394*n+858 \\ Charles R Greathouse IV, Aug 17 2011
Formula
G.f.: (858-1151*x+6027*x^2-6093*x^3+383*x^4)/(1-x)^5. - Bruno Berselli, Aug 24 2011
From G. C. Greubel, Dec 18 2016: (Start)
a(n) = 5*a(n-) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: (858 + 2281*x + 3861*x^2 + 990*x^3 + x^4)*exp(x). (End)
Extensions
Corrected and extended by Harvey P. Dale, Aug 16 2011
Offset changed from 1 to 0 by Vincenzo Librandi, Aug 17 2011
Comments