A163303 a(n) = n^3 + 73*n^2 + n + 67.
67, 142, 369, 754, 1303, 2022, 2917, 3994, 5259, 6718, 8377, 10242, 12319, 14614, 17133, 19882, 22867, 26094, 29569, 33298, 37287, 41542, 46069, 50874, 55963, 61342, 67017, 72994, 79279, 85878, 92797, 100042, 107619, 115534, 123793, 132402
Offset: 0
References
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp. 78-84
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tom Hansen, G. L. Mullen, Primitive Polynomials over finite fields, Math. Comp. 59 (200) (1992) 639
- Sean E. O'Connor, Computing primitive Polynomials - Theory and Algorithm
- Eric Weisstein, MathWorld: Primitive Polynomial
- Wikipedia, Primitive Polynomial
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A163304.
Programs
-
Magma
[n^3+73*n^2+n+67: n in [0..40]];
-
Magma
I:=[67,142,369,754]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
-
Mathematica
Table[n^3 + 73 n^2 + n + 67, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {67, 142, 369, 754}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
-
PARI
first(m)=vector(m,i,i--;i^3 + 73*i^2 + i + 67) \\ Anders Hellström, Sep 13 2015
Formula
G.f.: ( 67-126*x+203*x^2-138*x^3 ) / (x-1)^4 . - R. J. Mathar, Aug 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Sep 13 2015
E.g.f: (67 + 75*x + 76*x^2 + x^3)*exp(x). - G. C. Greubel, Dec 18 2016
Comments