cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163308 a(n) = 16*a(n-1) - 59*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 85, 829, 8249, 83073, 842477, 8578325, 87547057, 894631737, 9148831429, 93598030381, 957787431785, 9802315116081, 100327583381981, 1026904742262917, 10511148456669793, 107590995513204585
Offset: 0

Views

Author

Klaus Brockhaus, Jul 24 2009

Keywords

Comments

Binomial transform of A163307. Inverse binomial transform of A163309.

Crossrefs

Programs

  • Magma
    [ n le 2 select 8*n-7 else 16*Self(n-1)-59*Self(n-2): n in [1..18] ];
    
  • Mathematica
    LinearRecurrence[{16,-59},{1,9},20] (* Harvey P. Dale, Dec 06 2013 *)
  • PARI
    Vec((1-7*x)/(1-16*x+59*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016

Formula

a(n) = ((5+sqrt(5))*(8+sqrt(5))^n + (5-sqrt(5))*(8-sqrt(5))^n)/10.
G.f.: (1-7*x)/(1-16*x+59*x^2).
E.g.f.: (1/5)*exp(8*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - G. C. Greubel, Dec 18 2016