A163417 a(n) = 2^(floor((n-1)/2)) - n*(n-1)/2.
1, 0, -1, -4, -6, -11, -13, -20, -20, -29, -23, -34, -14, -27, 23, 8, 120, 103, 341, 322, 814, 793, 1795, 1772, 3796, 3771, 7841, 7814, 15978, 15949, 32303, 32272, 65008, 64975, 130477, 130442, 261478, 261441, 523547, 523508, 1047756, 1047715
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Patrick Brosnan, Zinovy Reichstein, Angelo Vistoli, Essential Dimension and Algebraic Stacks, arXiv:math/0701903 [math.AG], 2007.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,6,-2).
Programs
-
Mathematica
LinearRecurrence[{3,-1,-5,6,-2}, {1, 0, -1, -4, -6}, 50] (* G. C. Greubel, Dec 21 2016 *) Table[2^Floor[(n-1)/2]-(n(n-1))/2,{n,50}] (* Harvey P. Dale, Aug 25 2025 *)
-
PARI
Vec(x*(-1-4*x^3+x^4+3*x)/((2*x^2-1)*(1-x)^3) + O(x^50)) \\ G. C. Greubel, Dec 21 2016
Formula
From R. J. Mathar, Sep 27 2009: (Start)
a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +6*a(n-4) -2*a(n-5).
G.f.: x*(-1-4*x^3+x^4+3*x)/((2*x^2-1)*(1-x)^3). (End)
Extensions
Edited (but not checked) by N. J. A. Sloane, Aug 01 2009
Comments