cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163503 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3359790, 67191600, 1343748210, 26873288400, 537432252000, 10747974763890, 214946090593500, 4298653734898110, 85967713492846500, 1719247052441058000, 34382796834223386990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    coxG[{5,190,-19}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)
    CoefficientList[Series[(1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6), {x,0,20}], x] (* G. C. Greubel, Jul 26 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)) \\ G. C. Greubel, Jul 26 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-20*x+209*x^5-190*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
a(n) = 19*a(n-1)+19*a(n-2)+19*a(n-3)+19*a(n-4)-190*a(n-5). - Wesley Ivan Hurt, May 10 2021