Original entry on oeis.org
1913, 18379, 19013, 25013, 34613, 35879, 36979, 37379, 37813, 40013, 40213, 45613, 48091, 49279, 51613, 55313, 56179, 56713, 58613, 63079, 63179, 64091, 65479, 66413, 74779, 75913, 76213, 76579, 76679, 85313, 88379, 90379, 90679, 93113
Offset: 1
Smallest entries of all three kinds:
a(1) = 1913 because prime(293)=1913 and prime(294)=1931 are anagrams
a(2) = 18379 because prime(2106)=18379 and prime(2107)= 18397 are anagrams
a(13) = 48091 because prime(4953)=48091 and prime(4954)= 48109 are anagrams.
A163863
a(n) = smaller member p of first (i.e., smallest) Ormiston pair (p, q) with gap 18*n.
Original entry on oeis.org
1913, 98737, 35617, 1290719, 2030789, 11117213, 26742347, 109161617, 335440351, 92801029, 46006769, 3121826537, 5322398359, 7425894361, 6640450693, 43693080679, 53568812923, 72880315369, 271695323149, 40830835151, 38116957819, 241564332377, 351336577379, 551763092297, 923411678933
Offset: 1
The smallest Ormiston pair with gap 18*3 is (35617, 35671), so a(3) = 35617.
-
{m=20; v=vector(m); p=1; while(p<10^10, q=nextprime(p+1); gap=q-p; if(gap%18==0&&v[j=gap\18]==0&&vecsort(Vec(Str(p)))==vecsort(Vec(Str(q))), v[j]=p; print(p, ",", q, ",", gap, ",")); p=q); print(); for(j=1, m, if(v[j]>0, print1(v[j], ","), break))}
Showing 1-2 of 2 results.
Comments