A163678
Smaller prime p in Ormiston pairs (p, q) with q - p = 18.
Original entry on oeis.org
1913, 18379, 19013, 25013, 34613, 35879, 36979, 37379, 37813, 40013, 40213, 45613, 48091, 49279, 51613, 55313, 56179, 56713, 58613, 63079, 63179, 64091, 65479, 66413, 74779, 75913, 76213, 76579, 76679, 85313, 88379, 90379, 90679, 93113
Offset: 1
(19013, 19031) is an Ormiston pair with gap 18, so 19013 is in the sequence.
-
[ p: p in PrimesUpTo(100000) | q-p eq 18 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
-
Transpose[Select[Select[Partition[Prime[Range[10000]], 2, 1], Last[#] - First[#] == 18 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)
A163679
Smaller prime p in Ormiston pairs (p, q) with q - p = 36.
Original entry on oeis.org
98737, 116293, 187237, 240437, 276781, 343337, 357437, 447137, 454637, 456293, 465337, 508037, 542837, 565937, 586237, 623071, 802037, 817237, 820837, 836071, 837737, 839837, 843137, 850637, 884537, 897781, 903037, 913337, 1032071
Offset: 1
(187237, 187273) is an Ormiston pair with gap 36, so 187237 is in the sequence.
-
[ p: p in PrimesUpTo(1050000) | q-p eq 36 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
-
Transpose[Select[Select[Partition[Prime[Range[8000]], 2, 1], Last[#] - First[#] == 36 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)
A163680
Smaller prime p in Ormiston pairs (p, q) with q - p = 54.
Original entry on oeis.org
35617, 40639, 359783, 502339, 552917, 580417, 668417, 719839, 807017, 824339, 833117, 861239, 909917, 961339, 987739, 1078417, 1145539, 1168639, 1185017, 1196539, 1220839, 1313239, 1479617, 1497439, 1710439, 1710539, 1732139
Offset: 1
(359783, 359837) is an Ormiston pair with gap 54, so 359783 is in the sequence.
-
[ p: p in PrimesUpTo(1750000) | q-p eq 54 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
-
op54Q[{a_,b_}]:=Sort[IntegerDigits[a]]==Sort[IntegerDigits[b]] && b-a==54; Transpose[Select[Partition[Prime[Range[150000]],2,1],op54Q]][[1]] (* Harvey P. Dale, Jun 16 2014 *)
A163682
Smaller prime p in Ormiston pairs (p, q) with q - p = 90.
Original entry on oeis.org
2030789, 2542237, 3863017, 4508341, 7001123, 7583341, 8482459, 8547677, 8916239, 9194677, 9470017, 11117123, 11755673, 11999563, 13691563, 13898237, 15906127, 16047673, 16272343, 16299013, 16829563, 17437457, 17604347
Offset: 1
(3863017, 3863107) is an Ormiston pair with gap 90, so 3863017 is in the sequence.
-
[ p: p in PrimesUpTo(17700000) | q-p eq 90 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
-
Transpose[Select[Select[Partition[Prime[Range[70000]], 2, 1], Last[#] - First[#] == 90 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)
A163681
Smaller prime p in Ormiston pairs (p, q) with q - p = 72.
Original entry on oeis.org
1290719, 1477219, 1802419, 2520697, 2902519, 3327419, 3391697, 3498119, 4596419, 4641919, 4709519, 5521819, 5835619, 6091031, 6267419, 6642919, 6943919, 7118519, 7480519, 8241019, 8630519, 8934319, 8946919, 9859697
Offset: 1
(1802419, 1802491) is an Ormiston pair with gap 72, so 1802419 is in the sequence.
-
[ p: p in PrimesUpTo(10000000) | q-p eq 72 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
-
Transpose[Select[Select[Partition[Prime[Range[800000]],2,1],Last[#]-First[#]==72&],Sort[IntegerDigits[First[#]]]==Sort[IntegerDigits[Last[#]]]&]][[1]] (* Harvey P. Dale, Feb 14 2011 *)
Showing 1-5 of 5 results.
Comments