cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A163678 Smaller prime p in Ormiston pairs (p, q) with q - p = 18.

Original entry on oeis.org

1913, 18379, 19013, 25013, 34613, 35879, 36979, 37379, 37813, 40013, 40213, 45613, 48091, 49279, 51613, 55313, 56179, 56713, 58613, 63079, 63179, 64091, 65479, 66413, 74779, 75913, 76213, 76579, 76679, 85313, 88379, 90379, 90679, 93113
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(19013, 19031) is an Ormiston pair with gap 18, so 19013 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(100000) | q-p eq 18 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    Transpose[Select[Select[Partition[Prime[Range[10000]], 2, 1], Last[#] - First[#] == 18 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009

A163679 Smaller prime p in Ormiston pairs (p, q) with q - p = 36.

Original entry on oeis.org

98737, 116293, 187237, 240437, 276781, 343337, 357437, 447137, 454637, 456293, 465337, 508037, 542837, 565937, 586237, 623071, 802037, 817237, 820837, 836071, 837737, 839837, 843137, 850637, 884537, 897781, 903037, 913337, 1032071
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(187237, 187273) is an Ormiston pair with gap 36, so 187237 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(1050000) | q-p eq 36 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    Transpose[Select[Select[Partition[Prime[Range[8000]], 2, 1], Last[#] - First[#] == 36 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009

A163680 Smaller prime p in Ormiston pairs (p, q) with q - p = 54.

Original entry on oeis.org

35617, 40639, 359783, 502339, 552917, 580417, 668417, 719839, 807017, 824339, 833117, 861239, 909917, 961339, 987739, 1078417, 1145539, 1168639, 1185017, 1196539, 1220839, 1313239, 1479617, 1497439, 1710439, 1710539, 1732139
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(359783, 359837) is an Ormiston pair with gap 54, so 359783 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(1750000) | q-p eq 54 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    op54Q[{a_,b_}]:=Sort[IntegerDigits[a]]==Sort[IntegerDigits[b]] && b-a==54; Transpose[Select[Partition[Prime[Range[150000]],2,1],op54Q]][[1]] (* Harvey P. Dale, Jun 16 2014 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009

A163682 Smaller prime p in Ormiston pairs (p, q) with q - p = 90.

Original entry on oeis.org

2030789, 2542237, 3863017, 4508341, 7001123, 7583341, 8482459, 8547677, 8916239, 9194677, 9470017, 11117123, 11755673, 11999563, 13691563, 13898237, 15906127, 16047673, 16272343, 16299013, 16829563, 17437457, 17604347
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(3863017, 3863107) is an Ormiston pair with gap 90, so 3863017 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(17700000) | q-p eq 90 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    Transpose[Select[Select[Partition[Prime[Range[70000]], 2, 1], Last[#] - First[#] == 90 &], Sort[IntegerDigits[First[#]]] == Sort[IntegerDigits[Last[#]]] &]][[1]] (* G. C. Greubel, Aug 02 2017 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009

A163681 Smaller prime p in Ormiston pairs (p, q) with q - p = 72.

Original entry on oeis.org

1290719, 1477219, 1802419, 2520697, 2902519, 3327419, 3391697, 3498119, 4596419, 4641919, 4709519, 5521819, 5835619, 6091031, 6267419, 6642919, 6943919, 7118519, 7480519, 8241019, 8630519, 8934319, 8946919, 9859697
Offset: 1

Views

Author

Klaus Brockhaus, Aug 03 2009

Keywords

Comments

An Ormiston pair (or rearrangement prime pair) is a pair of consecutive primes that use the same digits in a different order.

Examples

			(1802419, 1802491) is an Ormiston pair with gap 72, so 1802419 is in the sequence.
		

Crossrefs

Subsequence of A069567.

Programs

  • Magma
    [ p: p in PrimesUpTo(10000000) | q-p eq 72 and a eq b where a is Sort(Intseq(p)) where b is Sort(Intseq(q)) where q is NextPrime(p) ];
  • Mathematica
    Transpose[Select[Select[Partition[Prime[Range[800000]],2,1],Last[#]-First[#]==72&],Sort[IntegerDigits[First[#]]]==Sort[IntegerDigits[Last[#]]]&]][[1]]  (* Harvey P. Dale, Feb 14 2011 *)

Extensions

Keyword base added by Klaus Brockhaus, Sep 18 2009
Showing 1-5 of 5 results.