cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163761 a(n) = 10*n*(n+1).

Original entry on oeis.org

0, 20, 60, 120, 200, 300, 420, 560, 720, 900, 1100, 1320, 1560, 1820, 2100, 2400, 2720, 3060, 3420, 3800, 4200, 4620, 5060, 5520, 6000, 6500, 7020, 7560, 8120, 8700, 9300, 9920, 10560, 11220, 11900, 12600, 13320, 14060, 14820, 15600, 16400, 17220, 18060, 18920
Offset: 0

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

20 times the n-th triangular number.
a(n) is the number of one-sided n-step prudent walks, from (0,0) to (3,3), for n-6 is even. - Shanzhen Gao, Apr 26 2011
Numbers k such that 10*k + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • Magma
    [10*n*(n+1): n in [0..50]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,20,60}, 50] (* or *) Table[10*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 03 2017 *)
  • PARI
    a(n)=10*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 20*A000217(n) = 10*A002378(n).
G.f.: 20*x/(1-x)^3.
E.g.f.: 10*x*(x+2)*exp(x). - G. C. Greubel, Aug 03 2017
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/10.
Product_{n>=1} (1 - 1/a(n)) = -(10/Pi)*cos(sqrt(7/5)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (10/Pi)*cos(sqrt(3/5)*Pi/2). (End)

Extensions

Entries checked by R. J. Mathar, Aug 06 2009