A230117 Primes p such that 2*p+1 is prime and 2*p+3 is not prime.
3, 11, 23, 41, 83, 131, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 593, 641, 653, 683, 719, 761, 911, 953, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1511, 1601, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2069, 2141
Offset: 1
Examples
23 is in the sequence because 2*23+1=47 (prime) and 2*23+3=49 (not prime).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(2500)| IsPrime(2*p+1) and not IsPrime(2*p+3)];
-
Mathematica
Select[Range[10^6],PrimeQ[#]&& PrimeQ[2#+1]&&!PrimeQ[2#+3]&]
-
PARI
is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && !ispseudoprime(2*n+3) \\ Felix Fröhlich, Jan 14 2017
Comments