cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163805 Expansion of (1 - x) * (1 - x^6) / ((1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Aug 04 2009

Keywords

Examples

			G.f. = 1 - x + x^3 - x^5 + x^7 - x^9 + x^11 - x^13 + x^15 - x^17 + x^19 + ...
		

Crossrefs

Programs

  • Maple
    1, seq(sin(3*n*Pi/2), n=1..100); # Ridouane Oudra, Nov 18 2024
  • Mathematica
    a[ n_] := Boole[n == 0] + {-1, 0, 1, 0}[[Mod[n, 4, 1]]]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = (n==0) + [0, -1, 0, 1][n%4 + 1]};
    
  • PARI
    {a(n) = (n==0) - kronecker(-4, n)};

Formula

Euler transform of length 6 sequence [ -1, 0, 1, 1, 0, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 - v) - u * (2 - u) * (3 - 2*v).
a(2*n) = 0 unless n=0, a(4*n + 1) = -1, a(4*n + 3) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+4) = a(n) unless n=0 or n=-4.
a(n) = - A117569(n) unless n=0. a(n) = (-1)^n * A117569(n).
Convolution inverse of A163806.
G.f.: (1 - x + x^2) / (1 + x^2).
G.f. A(x) = 1 - x / (1 + x^2) = 1 / (1 + x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Jan 03 2013
a(n) = A101455(n-2) = A056594(n-3), n>2. - R. J. Mathar, Aug 06 2009
E.g.f.: 1 - sin(x). - Stefano Spezia, Nov 16 2024
a(n) = sin(3*n*Pi/2), for n>0. - Ridouane Oudra, Nov 18 2024

A163810 Expansion of (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) in powers of x.

Original entry on oeis.org

1, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1
Offset: 0

Views

Author

Michael Somos, Nov 07 2007

Keywords

Examples

			G.f. = 1 - x - x^2 + x^4 + x^5 - x^7 - x^8 + x^10 + x^11 - x^13 - x^14 + ...
		

Crossrefs

A163806(n) = -a(n) unless n=0. A106510(n) = (-1)^n * a(n).
Convolution inverse of A028310. Series reversion of A109081.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1, -1},{-1, -1},104]] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    {a(n) = (n==0) + [0, -1, -1, 0, 1, 1][n%6 + 1]};
    
  • PARI
    {a(n) = (n==0) + (-1)^n * kronecker(-3, n)};

Formula

Euler transform of length 6 sequence [ -1, -1, -1, 0, 0, 1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 * u * (1 - u) * (2 - v) - (v - u^2).
a(3*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 2) = -1, a(6*n + 4) = a(6*n + 5) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+3) = -a(n) unless n=0 or n=-3.
G.f.: (1 - x)^2 / (1 - x + x^2).
Showing 1-2 of 2 results.