A222532
a(1)=2; for n >= 1, a(n+1) is the least prime p_m such that a(n)=p_m-p_{m-1}+...+(-1)^{m-k}p_k for some 0
2, 5, 7, 13, 17, 23, 31, 37, 43, 53, 59, 67, 73, 83, 89, 101, 109, 113, 131, 149, 157, 163, 173, 179, 197, 223, 257, 263, 269, 277, 283, 311, 347, 389, 401, 421, 431, 487, 503, 523, 557, 569, 577, 601, 613, 641, 661, 709, 733, 739, 773, 823, 827, 857, 883, 929, 947, 953, 977, 983, 997, 1009, 1019, 1031, 1039, 1051, 1097, 1117, 1129, 1151, 1181, 1223, 1229, 1237, 1249, 1279, 1327, 1361, 1373, 1423, 1459, 1481, 1499, 1543, 1559, 1571, 1601, 1621, 1627, 1669, 1693, 1699, 1721, 1733, 1759, 1783, 1823, 1873, 1973, 2011
Offset: 1
Keywords
A163847 Starting from a(1)=13, a(n+1) is the smallest prime > a(n) such that 2*a(n) - a(n+1) is also prime.
13, 19, 31, 43, 67, 73, 79, 97, 127, 151, 163, 199, 241, 271, 313, 349, 367, 397, 421, 433, 457, 541, 619, 631, 643, 673, 727, 811, 853, 877, 967, 997, 1087, 1123, 1129, 1171, 1213, 1297, 1303, 1327, 1423, 1447, 1471, 1483, 1543, 1597, 1627, 1657, 1693
Offset: 1
Keywords
Comments
Examples
For a(2), the first candidate is the prime 17=13+4, which is not selected because 13-4=9 is not prime. The next larger candidate is the prime 13+6=19, which is selected as a(2) because 13-6=7 is also prime. For a(3) the first candidate is the prime 19+4=23, which is not selected because 19-4=15 is not prime. The next candidate is the prime 19+10=29, which is not selected because the 19-10=9 is not prime. The next larger candidate, the prime 19+12=31 is selected as a(3), because 19-12=7 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Maple
A163847 := proc(n) option remember; if n = 1 then 13; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime( 2*procname(n-1)-a) then RETURN(a) ; fi; od: fi; end: seq(A163847(n),n=1..80) ; # R. J. Mathar, Aug 29 2009
-
Mathematica
DeltaPrimePrevNext[n_]:=Module[{d, k1, k2}, k1=n-1; k2=n+1; While[ !PrimeQ[k1] || !PrimeQ[k2], k2++; k1-- ]; d=k2-n]; lst13={}; p=13; Do[If[p-DeltaPrimePrevNext[p]>1, AppendTo[lst13, p]; p=p+DeltaPrimePrevNext[p]],{n, 7!}]; lst13 (* Second program: *) k=6 n=1 Do[If[m==6, Print[n, " ", 13]]; If[m==k, n=n+1; Do[If[PrimeQ[2Prime[m]-Prime[j]]==True, k=j; Print[n, " ", Prime[j]]; Goto[aa]], {j, m+1, PrimePi[2Prime[m]]}]]; Label[aa]; Continue, {m, 6, 1000}] (* Zhi-Wei Sun, Feb 25 2013 *) sp[p_]:=Module[{p1=NextPrime[p]},While[!PrimeQ[2p-p1],p1=NextPrime[p1]];p1]; NestList[ sp,13,50] (* Harvey P. Dale, Aug 09 2023 *)
-
PARI
first(n) = { my(res = vector(n)); res[1] = 13; for(x=2, n, forprime(p=res[x-1]+1, , if(ispseudoprime(2*res[x-1] - p), res[x]=p; break()))); res; } \\ Iain Fox, Nov 18 2017
Extensions
Definition and comment rephrased by R. J. Mathar, Aug 29 2009
A222566 a(1)=2; for n>0, a(n+1) is the least prime p>a(n) such that 2*(a(n)+1)-p is prime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 89, 97, 107, 109, 113, 127, 149, 151, 167, 173, 181, 191, 193, 197, 199, 227, 229, 233, 239, 241, 251, 263, 271, 281, 283, 311, 313, 317, 353, 359, 367, 383, 389, 397, 443, 449, 457, 467, 479, 499, 509, 521, 523, 557, 569, 571, 587, 599, 601, 617, 619, 641, 643, 647, 653, 661, 677, 683, 691, 701, 727, 773, 787, 857, 859, 863, 907, 929, 941, 947, 967, 983, 991, 1013, 1019, 1021, 1031, 1033, 1049, 1051, 1091, 1093
Offset: 1
Keywords
Comments
For a prime p define g(p) as the least prime q>p such that 2*(p+1)-q is prime. Construct a simple (undirected) graph G as follows: The vertex set of G is the set of all primes, and for the vertices p and q>p there is an edge connecting p and q if and only if g(p)=q. Clearly G contains no cycle.
Conjecture: The graph G constructed above is connected and hence it is a tree!
Examples
a(2)=3 since 2(2+1)=3+3, and a(3)=5 since 2(3+1)=5+3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Mathematica
k=1 n=1 Do[If[m==1,Print[n," ",2]];If[m==k,n=n+1;Do[If[PrimeQ[2(Prime[m]+1)-Prime[j]]==True,k=j;Print[n," ",Prime[j]];Goto[aa]],{j,m+1,PrimePi[2Prime[m]]}]]; Label[aa];Continue,{m,1,1000}]
A222603 a(1)=1; for n>0, a(n+1) is the least practical number q>a(n) such that 2(a(n)+1)-q is practical.
1, 2, 4, 6, 8, 12, 18, 20, 24, 30, 32, 36, 42, 54, 56, 60, 66, 78, 80, 84, 90, 104, 120, 162, 176, 192, 210, 224, 234, 260, 270, 272, 276, 294, 320, 330, 342, 378, 380, 384, 390, 392, 396, 414, 416, 420, 450, 462, 464, 468, 476, 486, 510, 512, 522, 546, 594, 620, 630, 702, 704, 714, 726, 728, 744, 750, 798, 800, 810, 812, 816, 920, 924, 930, 966, 968, 972, 980, 990, 992, 1014, 1040, 1050, 1088, 1122, 1232, 1242, 1254, 1280, 1290, 1302, 1316, 1332, 1350, 1352, 1380, 1386, 1458, 1518, 1520
Offset: 1
Keywords
Comments
By a result of Melfi, each positive even number can be written as the sum of two practical numbers.
For a practical number p, define h(p) as the least practical number q>p such that 2(p+1)-q is practical. Construct a simple (undirected) graph H as follows: The vertex set of H is the set of all practical numbers, and for two vertices p and q>p there is an edge connecting p and q if and only if h(p)=q. Clearly H contains no cycle.
Conjecture: The graph H constructed above is connected and hence it is a tree.
Examples
a(4)=6 since 2(a(3)+1)=10=6+4 with 4 and 6 both practical, and 6>a(3)=4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) k=1 n=1 Do[If[m==1,Print[n," ",1]];If[m==k,n=n+1;Do[If[pr[2j]==True&&pr[2m+2-2j]==True,k=2j;Print[n," ",2j];Goto[aa]],{j,Ceiling[(m+1)/2],m}]]; Label[aa];Continue,{m,1,1000}]
A198472 a(n)=q(n) if 4 | q(n)-2, and a(n)=q(n)/2 if 4 | q(n), where q(n) is the least practical number q>n with 2(n+1)-q practical.
2, 2, 2, 6, 6, 4, 4, 6, 6, 8, 6, 18, 8, 18, 8, 18, 18, 10, 10, 12, 12, 14, 12, 30, 14, 30, 14, 30, 30, 16, 16, 18, 18, 20, 18, 42, 20, 42, 20, 42, 42, 54, 24, 24, 28, 54, 24, 28, 30, 54, 28, 32, 54, 28, 28, 30, 30, 32, 30, 66, 32, 66, 32, 66, 66, 78, 36, 36, 40, 78, 36, 40, 42, 78, 40, 44, 78, 40, 40, 42, 42, 44, 42, 90, 44, 90, 44, 90, 90, 52, 48, 48, 50, 50, 48, 52, 50, 54, 50, 56
Offset: 1
Keywords
Comments
Conjecture: If b(1)>=4 is an integer and b(k+1)=a(b(k)) for k=1,2,3,..., then b(n)=4 for some n>0.
This conjecture has the same flavor as the Collatz conjecture.
Examples
a(20)=12 since 2(20+1)=24+18 with 24 and 18 both practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) Do[Do[If[pr[2k]==True&&pr[2n+2-2k]==True,Print[n," ",2k/(1+Mod[k-1,2])];Goto[aa]],{k,Ceiling[(n+1)/2],n}]; Label[aa];Continue,{n,1,100}]
-
PARI
A198472(n) = forstep(q=n+++bittest(n,0),9e9,2, is_A005153(q) && is_A005153(2*n-q) && return(if(q%4,q,q\2))) \\ M. F. Hasler, Feb 27 2013
Comments
Examples
Links
Crossrefs
Programs
Mathematica