A163614
a(n) = ((1 + 3*sqrt(2))*(3 + sqrt(2))^n + (1 - 3*sqrt(2))*(3 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 9, 47, 219, 985, 4377, 19367, 85563, 377809, 1667913, 7362815, 32501499, 143469289, 633305241, 2795546423, 12340141851, 54472026145, 240451163913, 1061402800463, 4685258655387, 20681732329081, 91293583386777
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(3+r)^n+(1-3*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
-
LinearRecurrence[{6,-7},{1,9},30] (* Harvey P. Dale, Sep 24 2015 *)
-
x='x+O('x^50); Vec((1+3*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Jul 30 2017
A163615
a(n) = ((1 + 3*sqrt(2))*(4 + sqrt(2))^n + (1 - 3*sqrt(2))*(4 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 10, 66, 388, 2180, 12008, 65544, 356240, 1932304, 10471072, 56716320, 307135552, 1663055936, 9004549760, 48753614976, 263965223168, 1429171175680, 7737856281088, 41894453789184, 226825642378240, 1228082785977344
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(4+r)^n+(1-3*r)*(4-r)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
-
LinearRecurrence[{8,-14},{1,10},30] (* Harvey P. Dale, Jun 11 2014 *)
-
x='x+O('x^50); Vec((1+2*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Jul 30 2017
A163613
a(n) = ((1 + 3*sqrt(2))*(2 + sqrt(2))^n + (1 - 3*sqrt(2))*(2 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 8, 30, 104, 356, 1216, 4152, 14176, 48400, 165248, 564192, 1926272, 6576704, 22454272, 76663680, 261746176, 893657344, 3051137024, 10417233408, 35566659584, 121432171520, 414595366912, 1415517124608, 4832877764608
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(2+r)^n+(1-3*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
-
LinearRecurrence[{4, -2}, {1, 8}, 50] (* G. C. Greubel, Jul 30 2017 *)
-
x='x+O('x^50); Vec((1+4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jul 30 2017
A163616
a(n) = ((1 + 3*sqrt(2))*(5 + sqrt(2))^n + (1 - 3*sqrt(2))*(5 - sqrt(2))^n)/2.
Original entry on oeis.org
1, 11, 87, 617, 4169, 27499, 179103, 1158553, 7466161, 48014891, 308427207, 1979929577, 12705470009, 81516319819, 522937387983, 3354498523993, 21517425316321, 138020787111371, 885307088838327, 5678592784821737
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
-
Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+3*r)*(5+r)^n+(1-3*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
-
CoefficientList[Series[(1 + x)/(1 - 10 x + 23 x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jun 14 2014 *)
LinearRecurrence[{10, -23}, {1, 11}, 50] (* G. C. Greubel, Jul 30 2017 *)
-
x='x+O('x^50); Vec((1+x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Jul 30 2017
Showing 1-4 of 4 results.
Comments