cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163888 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 4.

Original entry on oeis.org

5, 4, 10, 8, 20, 16, 40, 32, 80, 64, 160, 128, 320, 256, 640, 512, 1280, 1024, 2560, 2048, 5120, 4096, 10240, 8192, 20480, 16384, 40960, 32768, 81920, 65536, 163840, 131072, 327680, 262144, 655360, 524288, 1310720, 1048576, 2621440, 2097152, 5242880
Offset: 1

Views

Author

Klaus Brockhaus, Aug 06 2009

Keywords

Comments

Interleaving of A020714 and A000079 without initial terms 1 and 2.
Binomial transform is A163607, second binomial transform is A163608, third binomial transform is A163609, fourth binomial transform is A163610, fifth binomial transform is A163611.

Crossrefs

Cf. A020714 (5*2^n), A000079 (powers of 2), A163607, A163608, A163609, A163610, A163611.

Programs

  • Magma
    [ n le 2 select 6-n else 2*Self(n-2): n in [1..41] ];
    
  • Mathematica
    Transpose[NestList[{Last[#],2First[#]}&,{5,4},40]] [[1]]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{0, 2},{5, 4},41] (* Ray Chandler, Aug 14 2015 *)
  • PARI
    x='x+O('x^50); vec(x*(5+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 07 2017

Formula

a(n) = (7 - 3*(-1)^n)*2^((2*n-5+(-1)^n)/4).
G.f.: x*(5+4*x)/(1-2*x^2).