A163985 Sum of all isolated parts of all partitions of n.
0, 1, 2, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113
Offset: 0
Examples
For n=4, the five partitions of 4 are {(4);(2,2);(3,1);(2,1,1);(1,1,1,1)}. Since 1 and 2 are repeated parts and 3 and 4 are not repeated parts (or isolated parts) then a(4) = 3 + 4 = 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Omar E. Pol, Illustration of the shell model of partitions (2D view).
- Omar E. Pol, Illustration of the shell model of partitions (3D view).
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[0,1,2] cat [2*n-1: n in [3..60]]; // Vincenzo Librandi, Dec 23 2015
-
Mathematica
Join[{0, 1, 2}, Table[2 n - 1, {n, 3, 60}]] (* Vincenzo Librandi, Dec 23 2015 *)
-
PARI
a(n) = if (n<3, n, 2*n-1); \\ Michel Marcus, Dec 23 2015
Formula
a(n) = n for n<3, a(n) = 2*n-1 for n>=3.
a(n) = A140139(n), n>=1.
a(n) = A130773(n-1), n >=2. - R. J. Mathar, Jan 25 2023
From Stefano Spezia, Apr 21 2025: (Start)
G.f.: x*(1 + 2*x^2 - x^3)/(1 - x)^2.
E.g.f.: 1 - x^2/2 - exp(x)*(1 - 2*x). (End)
Comments