A164026 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 29, 812, 22736, 636608, 17825024, 499100266, 13974796080, 391293972342, 10956222324432, 306773975852064, 8589664345360896, 240510406272356430, 6734285904493468188, 188559852134231228994, 5279671570397554562148
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..685
- Index entries for linear recurrences with constant coefficients, signature (27,27,27,27,27,-378).
Programs
-
GAP
a:=[29, 812, 22736, 636608, 17825024, 499100266];; for n in [7..30] do a[n]:=27*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -378*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-28*t+405*t^6-378*t^7) )); // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-28*t+405*t^6-378*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^6)/(1-28*t+405*t^6-378*t^7), {t,0,30}], t] (* G. C. Greubel, Sep 07 2017 *) coxG[{6,378,-27}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 14 2019 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-28*t+405*t^6-378*t^7)) \\ G. C. Greubel, Sep 07 2017
-
Sage
def A164026_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-28*t+405*t^6-378*t^7)).list() A164026_list(30) # G. C. Greubel, Aug 13 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).
a(n) = -378*a(n-6) + 27*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments