A164030 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1, 31, 930, 27900, 837000, 25110000, 753299535, 22598972100, 677968744965, 20339049807900, 610171118005500, 18305122253220000, 549153328988465760, 16474589711416216125, 494237386595541683490, 14827112455463543698875
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..675
- Index entries for linear recurrences with constant coefficients, signature (29,29,29,29,29,-435).
Programs
-
GAP
a:=[31, 930, 27900, 837000, 25110000, 753299535];; for n in [7..30] do a[n]:=29*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -435*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7) )); // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
coxG[{6,435,-29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 29 2016 *) CoefficientList[Series[(1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7), {t,0,30}], t] (* G. C. Greubel, Sep 07 2017 *)
-
PARI
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7)) \\ G. C. Greubel, Sep 07 2017
-
Sage
def A164030_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7)).list() A164030_list(30) # G. C. Greubel, Aug 13 2019
Formula
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = -435*a(n-6) + 29*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
Comments