A164073 a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152, 6291456
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (0, 2).
Crossrefs
Programs
-
Magma
[ n le 2 select 2*n-1 else 2*Self(n-2): n in [1..42] ];
-
Mathematica
terms = 50; CoefficientList[Series[x * (1 + 3 * x)/(1 - 2 * x^2), {x, 0, terms}], x] (* T. D. Noe, Mar 31 2014 *) Flatten[Table[{2^n, 3 * 2^n}, {n, 0, 31}]] (* Alonso del Arte, Nov 30 2016 *) CoefficientList[Series[x (1 + 3 x)/(1 - 2 x^2), {x, 0, 44}], x] (* Michael De Vlieger, Dec 13 2016 *)
-
PARI
a(n) = (5 + (-1)^n) * 2^((2*n-9)\/4)
-
PARI
Vec(x*(1+3*x)/(1-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 13 2016
Formula
a(n) = (5 + (-1)^n) * 2^(1/4 * (2*n - 1 + (-1)^n))/4.
G.f.: x*(1 + 3 * x)/(1 - 2 * x^2).
a(n) = A074323(n), n>=1.
a(n) = A162255(n-1), n>=2.
a(n) = A072946(n-2), n > 2. - R. J. Mathar, Aug 17 2009
a(n+3) = a(n + 2) * a(n + 1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (2/3)a(n - 1) for odd n > 1, a(n) = 3a(n - 1) for even n. - Alonso del Arte, Nov 30 2016
Comments