cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164031 a(n) = ((2+3*sqrt(2))*(5+sqrt(2))^n+(2-3*sqrt(2))*(5-sqrt(2))^n)/4.

Original entry on oeis.org

1, 8, 57, 386, 2549, 16612, 107493, 692854, 4456201, 28626368, 183771057, 1179304106, 7566306749, 48539073052, 311365675293, 1997258072734, 12811170195601, 82174766283128, 527090748332457, 3380887858812626
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009

Keywords

Comments

Binomial transform of A164072. Fifth binomial transform of A164073.

Crossrefs

Cf. A164072, A164073 (1, 3, 2, 6, 4, 12).

Programs

  • GAP
    a:=[1,8];; for n in [3..25] do a[n]:=10*a[n-1]-23*a[n-2]; od; a; # Muniru A Asiru, Apr 04 2018
  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+r)^n+(2-3*r)*(5-r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 09 2009
    
  • Mathematica
    CoefficientList[Series[(1 - 2*x)/(1 - 10*x + 23*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{10,-23}, {1,8}, 50] (* G. C. Greubel, Sep 07 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 07 2017
    

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
G.f.: (1-2*x)/(1-10*x+23*x^2).
E.g.f.: exp(5*x)*(2*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 09 2009

A239628 Factored over the Gaussian integers, the least positive number having n prime factors counted multiply, including units -1, i, and -i.

Original entry on oeis.org

1, 9, 2, 6, 4, 12, 8, 16, 48, 144, 32, 96, 64, 192, 128, 256, 768, 2304, 512, 1536, 1024, 3072, 2048, 4096, 12288, 36864, 8192, 24576, 16384, 49152, 32768, 65536, 196608, 589824, 131072, 393216, 262144, 786432, 524288, 1048576, 3145728, 9437184, 2097152
Offset: 1

Views

Author

T. D. Noe, Mar 31 2014

Keywords

Comments

Here -1, i, and -i are counted as factors. The factor 1 is counted only in a(1). All these numbers of products of 2^k, 3, and 9.
Similar to A164073, which gives the least integer having n prime factors (over the Gaussian integers) shifted by 1.

Examples

			a(2) = 9 because 9 = 3 * 3.
a(3) = 2 because 2 = -i * (1 + i)^2.
a(4) = 6 because 6 = -i * (1 + i)^2 * 3.
		

Crossrefs

Cf. A001221, A001222 (integer factorizations).
Cf. A078458, A086275 (Gaussian factorizations).
Cf. A164073 (least number having n Gaussian factors, excluding units);
Cf. A239627 (number of Gaussian factors of n, including units).
Cf. A239629, A239630 (similar, but count distinct prime factors).

Programs

  • Mathematica
    nn = 30; t = Table[0, {nn}]; n = 0; found = 0; While[found < nn, n++; cnt = Total[Transpose[FactorInteger[n, GaussianIntegers -> True]][[2]]]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = n; found++]]; t

A072946 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we listed the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=2f(n-1)+2f(n-2).

Examples

			nu(0)=1,
nu(1)=2,
nu(2)=6,
nu(3)=16+4q,
nu(4)=44+20q+12q^2,
nu(5)=120+80q+64q^2+40q^3+8q^4,
nu(6)=328+288q+280q^2+232q^3+168q^4+64q^5+24q^6.
By listing the coefficients of the highest power in each nu(n) we get 1,2,6,4,12,8,24,...
		

Crossrefs

Essentially the same as A162255 and A164073.
Cf. A002605.

Programs

  • Mathematica
    LinearRecurrence[{0,2},{1,2,6},50] (* Harvey P. Dale, Dec 31 2015 *)

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).
O.g.f.: (1+2*x+4*x^2)/(1-2*x^2). - R. J. Mathar, Dec 05 2007

Extensions

More terms from R. J. Mathar, Dec 05 2007

A135247 a(n) = 3*a(n-1) + 2*a(n-2) - 6*a(n-3).

Original entry on oeis.org

1, 3, 11, 33, 103, 309, 935, 2805, 8431, 25293, 75911, 227733, 683263, 2049789, 6149495, 18448485, 55345711, 166037133, 498111911, 1494335733, 4483008223, 13449024669, 40347076055, 121041228165, 363123688591, 1089371065773, 3268113205511, 9804339616533
Offset: 0

Views

Author

Paul Curtz, Feb 15 2008

Keywords

Comments

This sequence interleaves A016133 and 3*A016133, see formulas. - Mathew Englander, Jan 08 2024
a(n) is the number of partitions of n into parts 1 (in three colors) and 2 (in two colors) where the order of colors matters. For example, the a(2)=11 such partitions (using parts 1, 1', 1'', 2, and 2') are 2, 2', 1+1, 1+1', 1+1'', 1'+1, 1'+1', 1'+1'', 1''+1, 1''+1', 1''+1''. For such partitions where the order of colors does not matter see A002624. - Joerg Arndt, Jan 18 2024

Crossrefs

Cf. A016133.

Programs

  • GAP
    a:=[1,3,11];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-6*a[n-3]; od; a; # G. C. Greubel, Nov 20 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-3*x-2*x^2+6*x^3) )); // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(coeff(series(1/(1-3*x-2*x^2+6*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 20 2019
  • Mathematica
    LinearRecurrence[{3,2,-6},{1,3,11},30] (* Harvey P. Dale, Jun 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-3*x-2*x^2+6*x^3)) \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    def A135247_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-3*x-2*x^2+6*x^3) ).list()
    A135247_list(30) # G. C. Greubel, Nov 20 2019
    

Formula

G.f.: 1/((1-3*x)*(1-2*x^2)). - G. C. Greubel, Oct 04 2016
From Mathew Englander, Jan 08 2024: (Start)
a(n) = A010684(n) * A016133(floor(n/2)).
a(n) = 3*a(n-1) + A077957(n) for n >= 1.
a(n) = (A000244(n+2) - A164073(n+3))/7.
(End)

Extensions

More terms from Harvey P. Dale, Jun 27 2015
Dropped two leading terms = 0. - Joerg Arndt, Jan 18 2024

A260211 Irregular triangle read by rows, T(n,k) is the decimal number conversion from an n-bit symmetric binary table arranged in ascending order for n > 1.

Original entry on oeis.org

0, 1, 0, 3, 0, 2, 5, 7, 0, 6, 9, 15, 0, 4, 10, 14, 17, 21, 27, 31, 0, 12, 18, 30, 33, 45, 51, 63, 0, 8, 20, 28, 34, 42, 54, 62, 65, 73, 85, 93, 99, 107, 119, 127, 0, 24, 36, 60, 66, 90, 102, 126, 129, 153, 165, 189, 195, 219, 231, 255
Offset: 1

Views

Author

Kival Ngaokrajang, Jul 19 2015

Keywords

Comments

The sequence of row lengths is A060546(n).
Column 2 is A164073. See illustration.

Examples

			The irregular triangle begins:
n\k 0  1  2  3  4  5  6  7 ...
1   0  1
2   0  3
3   0  2  5  7
4   0  6  9 15
5   0  4 10 14 17 21 27 31
6   0 12 18 30 33 45 51 63
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[Range[0,2^k -1], #==IntegerReverse[#,2,k]&],{k,1,8}]] (* Ed Pegg Jr, May 03 2021 *)
Showing 1-5 of 5 results.