cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164115 Expansion of (1 - x^5) / ((1 - x) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Michael Somos, Aug 10 2009

Keywords

Comments

The sequence A107453 has the same terms but different offset.
Convolution inverse of A164116.
Decimal expansion of 11111/99990. - Elmo R. Oliveira, Feb 18 2024

Examples

			1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + ...
		

Crossrefs

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2+x^3+x^4)/(1-x^4))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^3+x^4)/(1-x^4), {x, 0, 100}], x] (* G. C. Greubel, Sep 22 2018 *)
    LinearRecurrence[{0,0,0,1},{1,1,1,1,2},120] (* or *) PadRight[{1},120,{2,1,1,1}] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    {a(n) = 2 - (n==0) - (n%4>0)}
    
  • PARI
    x='x+O('x^99); Vec((1-x^5)/((1-x)*(1-x^4))) \\ Altug Alkan, Sep 23 2018
    

Formula

Euler transform of length-5 sequence [ 1, 0, 0, 1, -1].
a(n) is multiplicative with a(2) = 1, a(2^e) = 2 if e>1, a(p^e) = 1 if p>2.
a(n) = (-1)^n * A164117(n).
a(4*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1.
a(-n) = a(n). a(n+4) = a(n) unless n=0 or n=-4.
G.f.: (1 + x + x^2 + x^3 + x^4) / ((1+x)*(1-x)*(1+x^2)).
a(n) = A138191(n+2), n>0. - R. J. Mathar, Aug 17 2009
Dirichlet g.f. (1+1/4^s)*zeta(s). - R. J. Mathar, Feb 24 2011
a(n) = (i^n + (-i)^n + (-1)^n + 5)/4 for n > 0 where i is the imaginary unit. - Bruno Berselli, Feb 25 2011