A164115 Expansion of (1 - x^5) / ((1 - x) * (1 - x^4)) in powers of x.
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0
Examples
1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + x^10 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Programs
-
Magma
m:=100; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2+x^3+x^4)/(1-x^4))); // G. C. Greubel, Sep 22 2018 -
Mathematica
CoefficientList[Series[(1+x+x^2+x^3+x^4)/(1-x^4), {x, 0, 100}], x] (* G. C. Greubel, Sep 22 2018 *) LinearRecurrence[{0,0,0,1},{1,1,1,1,2},120] (* or *) PadRight[{1},120,{2,1,1,1}] (* Harvey P. Dale, Aug 24 2019 *)
-
PARI
{a(n) = 2 - (n==0) - (n%4>0)}
-
PARI
x='x+O('x^99); Vec((1-x^5)/((1-x)*(1-x^4))) \\ Altug Alkan, Sep 23 2018
Formula
Euler transform of length-5 sequence [ 1, 0, 0, 1, -1].
a(n) is multiplicative with a(2) = 1, a(2^e) = 2 if e>1, a(p^e) = 1 if p>2.
a(n) = (-1)^n * A164117(n).
a(4*n) = 2 unless n=0. a(2*n + 1) = a(4*n + 2) = 1.
a(-n) = a(n). a(n+4) = a(n) unless n=0 or n=-4.
G.f.: (1 + x + x^2 + x^3 + x^4) / ((1+x)*(1-x)*(1+x^2)).
a(n) = A138191(n+2), n>0. - R. J. Mathar, Aug 17 2009
Dirichlet g.f. (1+1/4^s)*zeta(s). - R. J. Mathar, Feb 24 2011
a(n) = (i^n + (-i)^n + (-1)^n + 5)/4 for n > 0 where i is the imaginary unit. - Bruno Berselli, Feb 25 2011
Comments