A164300 a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.
1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-14).
Crossrefs
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009 -
Mathematica
LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
-
PARI
my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
-
Sage
[( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
Formula
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 12.
G.f.: (1+4*x)/(1-8*x+14*x^2).
E.g.f.: (4*sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(4*x). - Ilya Gutkovskiy, Jun 24 2016
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*3^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)
Extensions
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009
Comments