A164397 Number of binary strings of length n with no substrings equal to 0001 or 0111.
1, 2, 4, 8, 14, 24, 41, 68, 112, 184, 300, 488, 793, 1286, 2084, 3376, 5466, 8848, 14321, 23176, 37504, 60688, 98200, 158896, 257105, 416010, 673124, 1089144, 1762278, 2851432, 4613721, 7465164, 12078896, 19544072, 31622980, 51167064, 82790057, 133957134
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 500 terms from R. H. Hardin)
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-2,0,1).
Crossrefs
Cf. A178982.
Programs
-
Magma
I:=[14,24,41,68,112,184]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-4)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 19 2017
-
Mathematica
LinearRecurrence[{2,0,0,-2,0,1},{14,24,41,68,112,184},40] (* Harvey P. Dale, Jan 23 2012 *) CoefficientList[Series[-1 (14 - 4 x - 7 x^2 - 14 x^3 + 4 x^4 + 8 x^5) / ((1 + x + x^2) (x^2 + x - 1) (x - 1)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2017 *)
-
PARI
x='x+O('x^50); Vec(-x^4*(14-4*x-7*x^2-14*x^3+4*x^4+8*x^5)/( (1+x+x^2)*(x^2+x-1)*(x-1)^2 )) \\ G. C. Greubel, Sep 18 2017
Formula
G.f.: -1/((x^2+x+1)*(x^2+x-1)*(x-1)^2). - R. J. Mathar, Nov 30 2011
Extensions
Edited by Alois P. Heinz, Oct 27 2017