cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4.

Original entry on oeis.org

1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096
Offset: 1

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Interleaving of A000400 and A067411 without initial term 1.
Binomial transform is apparently A123011. Fourth binomial transform is A154235.

Crossrefs

Cf. A000400 (powers of 6), A067411, A123011, A154235.

Programs

  • Magma
    [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ];
    
  • Mathematica
    LinearRecurrence[{0,6}, {1,4}, 40] (* G. C. Greubel, Jul 16 2021 *)
  • Sage
    [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021

Formula

a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)).
G.f.: x*(1+4*x)/(1-6*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021