A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4.
1, 4, 6, 24, 36, 144, 216, 864, 1296, 5184, 7776, 31104, 46656, 186624, 279936, 1119744, 1679616, 6718464, 10077696, 40310784, 60466176, 241864704, 362797056, 1451188224, 2176782336, 8707129344, 13060694016, 52242776064, 78364164096
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6).
Programs
-
Magma
[ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ];
-
Mathematica
LinearRecurrence[{0,6}, {1,4}, 40] (* G. C. Greubel, Jul 16 2021 *)
-
Sage
[((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # G. C. Greubel, Jul 16 2021
Formula
a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)).
G.f.: x*(1+4*x)/(1-6*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - G. C. Greubel, Jul 16 2021
Comments