cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164643 Semiprimes pq with pq - 1 divisible by p + q.

Original entry on oeis.org

6, 21, 301, 697, 1333, 1909, 2041, 3901, 24601, 26977, 96361, 130153, 163201, 250321, 275833, 296341, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053, 1284121, 1403221, 1618597, 1787917, 2287933, 2462881, 2488201, 2666437
Offset: 1

Views

Author

Mohamed Bouhamida, Aug 19 2009

Keywords

Comments

The first three terms are Syl(0)*Syl(1), Syl(1)*Syl(2) and Syl(2)*Syl(3). Syl means Sylvester's sequence, see A000058.
Products of two consecutive numbers p and q in Sylvester's sequence with primes p and q are in the sequence.
Let p and q be consecutive prime Sylvester numbers. Then: pq - 1 = p*(p^2 - p + 1) - 1 = p^3 - p^2 + p - 1 = (p^2 + 1)*(p - 1) = (p + p^2 - p + 1)*(p - 1) = (p + q)*(p - 1) it means that: (pq - 1) is divisible by (p + q). - Mohamed Bouhamida, Aug 21 2009
(p-k)*(q-k) = k^2 + 1 for some integer k, providing a fast way for finding appropriate p,q. - Max Alekseyev, Aug 26 2009

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
    isA164643 := proc(n) if isA001358(n) then p := op(1,op(1,ifactors(n)[2]) ) ; q := n/p ; if (p*q-1) mod (p+q) =0 then true; else false; fi; else false; fi; end:
    for n from 4 to 3000000 do if isA164643(n) then print(n) ; fi; od: # R. J. Mathar, Aug 24 2009
  • Mathematica
    dsQ[n_]:=Module[{prs=Transpose[FactorInteger[n]][[1]]},Divisible[n-1, Total[prs]]]; Select[Select[Range[2000000], PrimeOmega[#] ==2&], dsQ] (* Harvey P. Dale, Jun 15 2011 *)

Extensions

Extended by R. J. Mathar, Aug 24 2009
More terms from Max Alekseyev, Aug 26 2009